A107020 Primes p such that 2p+1, 4p+3, 6p+5 are all primes.
2, 11, 41, 1901, 2459, 5081, 5849, 6131, 6449, 8969, 9221, 10691, 12119, 13229, 14009, 14321, 14669, 15161, 18461, 19709, 20411, 21179, 22271, 23099, 24551, 25601, 30389, 37991, 39419, 41381, 43691, 44699, 52289, 55631, 56081, 58979
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107023: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 all prime; A107022: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 all prime; A107020: p, 2p+1, 4p+3, 6p+5, 8p+7 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).
Programs
-
Magma
[p: p in PrimesUpTo(1000000)| IsPrime(2*p+1) and IsPrime(4*p+3) and IsPrime(6*p+5) ]; // Vincenzo Librandi, Nov 13 2010
-
Mathematica
Select[Range[60000],AllTrue[{#,2#+1,4#+3,6#+5},PrimeQ]&] (* James C. McMahon, Feb 09 2024 *)
Extensions
More terms from Vincenzo Librandi, Apr 01 2010