cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107025 Binomial transform of the expansion of 1/(1-x^5-x^6).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 938, 1808, 3459, 6826, 14198, 30960, 69143, 154433, 340006, 734561, 1561313, 3286129, 6900097, 14542101, 30855957, 65908862, 141395972, 303745077, 651763377, 1395140215, 2978858672
Offset: 0

Views

Author

Paul Barry, May 09 2005

Keywords

Comments

In general, the binomial transform of 1/(1-x^r-x^(r+1)) is given by (1-x)^r/((1-x)^(r+1)-x^r), with a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k,(r+1)k) = Sum_{k=0..floor((r+1)n/r)} binomial(k,(r+1)n-r*k).
Number of compositions of 6*n into parts 5 and 6. - Seiichi Manyama, Jun 22 2024

Crossrefs

Formula

G.f.: (1-x)^5/((1-x)^6-x^5).
a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+7a(n-5)-a(n-6).
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 6k).
a(n) = Sum_{k=0..floor(6n/5)} binomial(k, 6n-5k).
a(n) = A017837(6*n). - Seiichi Manyama, Jun 22 2024