A107031
Diagonal sums of number triangle A107030.
Original entry on oeis.org
1, 2, 3, 4, 7, 12, 25, 56, 145, 422, 1389, 5072, 20283, 87996, 412663, 2087868, 11361831, 66155642, 409567833, 2680486870, 18465061963, 133504614880, 1011121118741, 8008145020804, 66201411633209, 570006877641976
Offset: 0
A107027
Number triangle associated to the Riordan arrays (1/(1+x),x/(1+x)^k),k>=0.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 20, 16, 2, 1, 2, 10, 38, 70, 32, 2, 1, 2, 12, 62, 196, 252, 64, 2, 1, 2, 14, 92, 426, 1062, 924, 128, 2, 1, 2, 16, 128, 792, 3112, 5948, 3432, 256, 2, 1, 2, 18, 170, 1326, 7302, 23686, 34120, 12870, 512, 2
Offset: 0
Triangle begins
1;
1, 2;
1, 2, 2;
1, 2, 4, 2;
1, 2, 6, 8, 2;
1, 2, 8, 20, 16, 2;
The reverse of this triangle is
A107030.
A107026
Row sums of inverse of Riordan array (1/(1+x),x/(1+x)^4).
Original entry on oeis.org
1, 2, 10, 62, 426, 3112, 23686, 185684, 1488554, 12144248, 100489320, 841268078, 7112138790, 60629940152, 520591221412, 4498091003272, 39079909924522, 341193986978008, 2991881019936760, 26338436818801496, 232688056611178216
Offset: 0
-
A107026 := proc(n)
3*binomial(4*n,n)-2*add(binomial(4*n,k),k=0..n) ;
end proc: # R. J. Mathar, Feb 20 2015
A382100
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 8, 1, 1, 1, 5, 19, 35, 16, 1, 1, 1, 6, 31, 98, 126, 32, 1, 1, 1, 7, 46, 213, 531, 462, 64, 1, 1, 1, 8, 64, 396, 1556, 2974, 1716, 128, 1, 1, 1, 9, 85, 663, 3651, 11843, 17060, 6435, 256, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 4, 10, 19, 31, 46, 64, ...
1, 8, 35, 98, 213, 396, 663, ...
1, 16, 126, 531, 1556, 3651, 7391, ...
1, 32, 462, 2974, 11843, 35232, 86488, ...
-
a(n, k) = polcoef(1/(2-sum(j=0, n, binomial(k*j+1, j)/(k*j+1)*x^j+x*O(x^n))), n);
-
a(n, k) = if(n==0, 1, (binomial(k*n, n)-(k-2)*sum(j=0, n-1, binomial(k*n, j)))/2);
Showing 1-4 of 4 results.
Comments