cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107031 Diagonal sums of number triangle A107030.

Original entry on oeis.org

1, 2, 3, 4, 7, 12, 25, 56, 145, 422, 1389, 5072, 20283, 87996, 412663, 2087868, 11361831, 66155642, 409567833, 2680486870, 18465061963, 133504614880, 1011121118741, 8008145020804, 66201411633209, 570006877641976
Offset: 0

Views

Author

Paul Barry, May 09 2005

Keywords

Formula

a(n)=sum{k=0..floor(n/2), (k-1)*C(k(n-2k), n-2k)-(k-2)*sum{j=0..n-k, C(k(n-2k), j)}}

A107027 Number triangle associated to the Riordan arrays (1/(1+x),x/(1+x)^k),k>=0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 20, 16, 2, 1, 2, 10, 38, 70, 32, 2, 1, 2, 12, 62, 196, 252, 64, 2, 1, 2, 14, 92, 426, 1062, 924, 128, 2, 1, 2, 16, 128, 792, 3112, 5948, 3432, 256, 2, 1, 2, 18, 170, 1326, 7302, 23686, 34120, 12870, 512, 2
Offset: 0

Views

Author

Paul Barry, May 09 2005

Keywords

Comments

As a number square read by antidiagonals, the rows represent the row sums of the inverses of the Riordan arrays (1/(1+x),x/(1+x)^k), k>=0. The rows are then given by T(n,k)=(n-1)C(n*k,k)-(n-2)*sum{j=0..k, C(n*k,j)}.

Examples

			Triangle begins
  1;
  1, 2;
  1, 2, 2;
  1, 2, 4,  2;
  1, 2, 6,  8,  2;
  1, 2, 8, 20, 16, 2;
		

Crossrefs

T(n,n) is A040000, T(n+1,n) is A000079, T(n+2,n) is A000984, T(n+3,n) is A047098.
The reverse of this triangle is A107030.
Row sums are A107028.
Diagonal sums are A107029.

Formula

Number triangle T(n, k)=if(k<=n, (n-k-1)C((n-k)*k, k)-(n-k-2)*sum{j=0..k, C((n-k)*k, j)}, 0).

A107026 Row sums of inverse of Riordan array (1/(1+x),x/(1+x)^4).

Original entry on oeis.org

1, 2, 10, 62, 426, 3112, 23686, 185684, 1488554, 12144248, 100489320, 841268078, 7112138790, 60629940152, 520591221412, 4498091003272, 39079909924522, 341193986978008, 2991881019936760, 26338436818801496, 232688056611178216
Offset: 0

Views

Author

Paul Barry, May 09 2005

Keywords

Comments

The Riordan array (1/(1+x),x/(1+x)^4) has general term (-1)^(n-k)*binomial(n+3k,4k).

Crossrefs

Programs

  • Maple
    A107026 := proc(n)
        3*binomial(4*n,n)-2*add(binomial(4*n,k),k=0..n) ;
    end proc: # R. J. Mathar, Feb 20 2015

Formula

G.f.: A(x)=y satisfies (2y)^4*x-(y+1)^3*(y-1)=0.
a(n) = 3*binomial(4*n, n) - 2*Sum_{k=0..n} binomial(4*n, k).
Conjecture: +189*n*(3*n-1)*(3*n-2)*a(n) +72*(-1034*n^3+3098*n^2-3754*n+1655)*a(n
-1) +384*(2700*n^3-12828*n^2+20426*n-10785)*a(n-2) +4096*(-1066*n^3+6666*n^2-129
50*n+7365)*a(n-3) -65536*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Feb 20 2015
Conjecture: 3*n*(3*n-1)*(3*n-2)*(22*n^2-62*n+43)*a(n) +8*(-1892*n^5+8280*n^4-13330*n^3+9660*n^2-3048*n+315)*a(n-1) +128*(4*n-7)*(2*n-3)*(4*n-5)*(22*n^2-18*n+3)*a(n-2)=0. - R. J. Mathar, Feb 20 2015

A382100 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 8, 1, 1, 1, 5, 19, 35, 16, 1, 1, 1, 6, 31, 98, 126, 32, 1, 1, 1, 7, 46, 213, 531, 462, 64, 1, 1, 1, 8, 64, 396, 1556, 2974, 1716, 128, 1, 1, 1, 9, 85, 663, 3651, 11843, 17060, 6435, 256, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2025

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,     1, ...
  1,  1,   1,    1,     1,     1,     1, ...
  1,  2,   3,    4,     5,     6,     7, ...
  1,  4,  10,   19,    31,    46,    64, ...
  1,  8,  35,   98,   213,   396,   663, ...
  1, 16, 126,  531,  1556,  3651,  7391, ...
  1, 32, 462, 2974, 11843, 35232, 86488, ...
		

Crossrefs

Columns k=0..5 give A000012, A011782, A088218, A047099 (for n > 0), A107026(n)/2 (for n > 0), A304979(n)/2 (for n > 0).

Programs

  • PARI
    a(n, k) = polcoef(1/(2-sum(j=0, n, binomial(k*j+1, j)/(k*j+1)*x^j+x*O(x^n))), n);
    
  • PARI
    a(n, k) = if(n==0, 1, (binomial(k*n, n)-(k-2)*sum(j=0, n-1, binomial(k*n, j)))/2);

Formula

A(n,k) = ( binomial(k*n,n) - (k-2) * Sum_{j=0..n-1} binomial(k*n,j) )/2 for n > 0.
G.f. of column k: 1/( 1 - Series_Reversion( x/(1+x)^k ) ).
Showing 1-4 of 4 results.