A107038 First differences of indices of squarefree Fibonacci numbers.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 0..1078 (terms 0..763 from Muniru A Asiru)
Programs
-
GAP
P1:=List(List(List([1..180], n->Fibonacci(n)),Factors),Collected);; P2:=Positions(List(List([1..Length(P1)],i->List([1..Length(P1[i])],j->P1[i][j][2])),Set),[1]);; a:=List([1..Length(P2)-1],j->P2[j+1]-P2[j]); # Muniru A Asiru, Jul 06 2018
-
Maple
with(numtheory): with(combinat): a:=proc(n) if mobius(fibonacci(n))<>0 then n else fi end:A:=[seq(a(n),n=1..180)]:seq(A[j]-A[j-1],j=2..nops(A)); # Emeric Deutsch, May 30 2005
-
Mathematica
Range[200] // Select[#, SquareFreeQ[Fibonacci[#]]&]& // Differences (* Jean-François Alcover, Aug 29 2024 *)
-
PARI
lista(nn) = {my(v = select(x->issquarefree(x), vector(nn, k, fibonacci(k)), 1)); vector(#v-1, k, v[k+1] - v[k]);} \\ Michel Marcus, Jul 09 2018
Extensions
More terms from Emeric Deutsch, May 30 2005
Comments