A107063 Expansion of q^(-1/24) * (eta(q^2) * eta(q^3)^4) / (eta(q) * eta(q^6)^2) in powers of q.
1, 1, 1, -2, -2, -1, 0, 1, -2, 0, -2, 0, 3, 2, 2, -1, 0, 2, -2, 2, 0, 0, 1, 0, 2, -2, 1, 0, -2, -4, 0, 0, -2, 0, 0, 1, 0, 0, 0, -2, 1, 0, -2, -2, 0, 0, 0, 2, 2, 0, 2, 1, 2, 0, -2, 2, 0, 1, 0, 0, 0, 0, -2, 4, 0, 0, 0, -2, 0, 2, 3, 0, 0, -2, 2, -2, -2, -1, -2, 0, -4, 0, 0, 2, -2, 0, 0, -2, 2, 2, -2, 0, 1, 0, 0, -2, 0, -4, 0, 2, 1, -2, 0, -2, 0
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
A030204(3*n) = a(n).
Programs
-
Mathematica
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/24)* (eta[q^2]*eta[q^3]^4)/(eta[q]*eta[q^6]^2), {q, 0, 100}], q] (* G. C. Greubel, Apr 18 2018 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^4 / eta(x + A) / eta(x^6 + A)^2, n))}
Formula
Euler transform of period 6 sequence [1, 0, -3, 0, 1, -2, ...].
G.f.: Product_{k>0} (1+x^k)*(1-x^(3*k))^2/(1+x^(3*k))^2.
Expansion of phi(-q^3)^2 / chi(-q) in powers of q where phi(), chi() are Ramanujan theta functions.
Comments