cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107078 Whether n has non-unitary prime divisors.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0
Offset: 1

Views

Author

Paul Barry, May 10 2005

Keywords

Comments

Also the characteristic function of the numbers that are not squarefree: A013929. - Enrique Pérez Herrero, Jul 08 2012
The sequence of partial sums of this sequence is A057627. - Jason Kimberley, Feb 01 2017

Crossrefs

Programs

  • Maple
    seq(1 - abs(numtheory:-mobius(n)), n = 1..101); # Peter Luschny, Jul 27 2023
  • Mathematica
    Table[1-MoebiusMu[n]^2,{n,1,100}] (* Enrique Pérez Herrero, Jul 08 2012 *)
  • Python
    from sympy import mobius
    def A107078(n): return int(not mobius(n)) # Chai Wah Wu, Dec 05 2024

Formula

a(n) = 1 if A056170(n)>0, 0 otherwise.
a(n) = A107079(n) - A013928(n+1).
a(n) = 1 - A008966(n). - Reinhard Zumkeller, Oct 03 2008
a(n) = Sum_{k=0..n-1} (mu(n-k-1) mod 2) - Sum_{k=0..n-1} (mu(n-k) mod 2).
a(n) = abs(mu(n) - (-1)^omega(n)) = (mu(n) - (-1)^omega(n))^2 = abs(A008683(n) - (-1)^A001221(n)). - Enrique Pérez Herrero, Apr 28 2012
a(n) = 1 - mu(n)^2. - Enrique Pérez Herrero, Jul 08 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Jul 24 2022