A107123 Numbers k such that (10^(2*k+1)+18*10^k-1)/9 is prime.
0, 1, 2, 19, 97, 9818
Offset: 1
Examples
19 is in the sequence because the palindromic number (10^(2*19+1)+18*10^19-1)/9 = 1(19).3.1(19) = 111111111111111111131111111111111111111 is prime.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 11...11311...11
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Maple
select(n -> isprime((10^(2*n+1)+18*10^n-1)/9), [$0..100]); # Robert Israel, Jun 11 2015
-
Mathematica
Do[If[PrimeQ[(10^(2n + 1) + 18*10^n - 1)/9], Print[n]], {n, 2500}]
-
PARI
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+18*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
Formula
a(n) = (A077779(n-1)-1)/2, for n > 1. [Corrected by M. F. Hasler, Feb 06 2020]
Extensions
Edited by Ray Chandler, Dec 28 2010
Comments