cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107135 Primes of the form 5x^2 + 6y^2.

Original entry on oeis.org

5, 11, 29, 59, 101, 131, 149, 179, 251, 269, 389, 419, 461, 491, 509, 659, 701, 821, 941, 971, 1019, 1061, 1091, 1109, 1181, 1229, 1259, 1301, 1451, 1499, 1571, 1619, 1709, 1811, 1901, 1931, 1949, 1979, 2069, 2099, 2141, 2309, 2339, 2381, 2411
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -120. See A107132 for more information.
Except for 5, also primes of the form 11x^2 + 4xy + 14y^2. See A140633. - T. D. Noe, May 19 2008

Crossrefs

Cf. A139827.

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 120 in {5, 11, 29, 59, 101} ]; // Vincenzo Librandi, Jul 23 2012
    
  • Mathematica
    QuadPrimes2[5, 0, 6, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([5]),s=[11,29,59,101]); forprime(p=11,lim, if(setsearch(s,p%120), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {5, 11, 29, 59, 101} (mod 120). - T. D. Noe, May 02 2008