cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107152 Primes of the form x^2 + 45y^2.

Original entry on oeis.org

61, 109, 181, 229, 241, 349, 409, 421, 541, 601, 661, 709, 769, 829, 1009, 1021, 1069, 1129, 1201, 1249, 1321, 1381, 1429, 1489, 1549, 1609, 1621, 1669, 1741, 1789, 1801, 1861, 2029, 2089, 2161, 2221, 2269, 2281, 2341, 2389, 2521, 2689, 2749, 3001, 3049, 3061, 3109, 3121, 3169, 3181
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -180. See A107132 for more information.
Also primes of the form x^2 + 60y^2. See A140633. - T. D. Noe, May 19 2008
Also primes of the form x^2+6*x*y-6*y^2, of discriminant 60 (as well as of the form x^2+8*x*y+y^2). - Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 24 2008

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A139643.
Cf. A141302, A141303, A141304 (d=60).
All representatives in A243188.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 60 in {1, 49 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[1, 0, 45, 10000] (* see A106856 *)
    Select[Prime[Range[500]], MatchQ[Mod[#, 60], 1|49]&] (* Jean-François Alcover, Oct 28 2016 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=61,lim, t=p%60; if(t==1||t==49, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Primes congruent to {1, 49} (mod 60). - T. D. Noe, Apr 29 2008