cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107132 Primes of the form 2x^2 + 13y^2.

Original entry on oeis.org

2, 13, 31, 149, 167, 317, 359, 397, 463, 487, 509, 613, 661, 709, 839, 1061, 1087, 1103, 1151, 1181, 1367, 1471, 1783, 1789, 1861, 2039, 2111, 2221, 2269, 2437, 2503, 2621, 2647, 2917, 2927, 2957, 3023, 3079, 3167, 3229, 3373, 3541, 3853
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -104. Binary quadratic forms ax^2+cy^2 have discriminant d=-4ac. We consider sequences of primes produced by forms with -400<=d<=0, a<=c and gcd(a,c)=1. These restrictions yield 173 sequences of prime numbers, which are organized by discriminant below. See A106856 for primes of the form ax^2+bxy+cy^2 with discriminant > -100.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Cf. A033218 (d=-104), A014752 (d=-108), A107133, A107134 (d=-112), A033219 (d=-116), A107135-A107137, A033220 (d=-120), A033221 (d=-124), A105389 (d=-128), A107138, A033222 (d=-132), A107139, A033223 (d=-136), A107140, A033224 (d=-140), A107141, A107142 (d=-144), A033225 (d=-148), A107143, A033226 (d=-152), A033227 (d=-156), A107144, A107145 (d=-160), A033228 (d=-164), A107146-A107148, A033229 (d=-168).
Cf. A033230 (d=-172), A107149, A107150 (d=-176), A107151, A107152 (d=-180), A107153, A033231 (d=-184), A033232 (d=-188), A141373 (d=-192), A107155 (d=-196), A107156, A107157 (d=-200), A107158, A033233 (d=-204), A107159, A107160 (d=-208), A033234 (d=-212), A107161, A107162 (d=-216), A033235 (d=-220), A107163, A107164 (d=-224), A107165, A033236 (d=-228), A107166, A033237 (d=-232), A033238 (d=-236).
Cf. A107167-A107169 (d=-240), A033239 (d=-244), A107170, A033240 (d=-248), A014754 (d=-256), A107171, A033241 (d=-260), A107172-A107174, A033242 (d=-264), A033243 (d=-268), A107175, A107176 (d=-272), A107177, A033244 (d=-276), A107178-A107180, A033245 (d=-280), A033246 (d=-284), A107181 (d=-288), A033247 (d=-292), A107182, A033248 (d=-296), A107183, A107184 (d=-300), A107185, A107186 (d=-304), A107187, A033249 (d=-308).
Cf. A107188-A107190, A033250 (d=-312), A033251 (d=-316), A107191, A107192 (d=-320), A107193 (d=-324), A107194, A033252 (d=-328), A033253 (d=-332), A107195-A107198 (d=-336), A107199, A033254 (d=-340), A107200, A033255 (d=-344), A033256 (d=-348), A107132 A107201, A107202 (d=-352), A033257 (d=-356), A107203-A107206 (d=-360), A107207, A033258 (d=-364), A107208, A107209 (d=-368), A107210, A033202 (d=-372).
Cf. A107211, A033204 (d=-376), A033206 (d=-380), A107212, A107213 (d=-384), A033208 (d=-388), A107214, A107215 (d=-392), A107216, A107217 (d=-396), A107218, A107219 (d=-400).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2,13]),t); for(y=1,sqrtint(lim\13), for(x=1,sqrtint((lim-13*y^2)\2), if(isprime(t=2*x^2+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

A140633 Primes of the form 7x^2+4xy+52y^2.

Original entry on oeis.org

7, 103, 127, 223, 367, 463, 487, 607, 727, 823, 967, 1063, 1087, 1303, 1327, 1423, 1447, 1543, 1567, 1663, 1783, 2143, 2287, 2383, 2503, 2647, 2767, 2887, 3343, 3463, 3583, 3607, 3727, 3823, 3847, 3943, 3967, 4327, 4423, 4447, 4567, 4663
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1440. Also primes of the forms 7x^2+6xy+87y^2 and 7x^2+2xy+103y^2.
Voight proves that there are exactly 69 equivalence classes of positive definite binary quadratic forms that represent almost the same primes. 48 of those quadratic forms are of the idoneal type discussed in A139827. The remaining 21 begin at A140613 and end here. The cross-references section lists the quadratic forms in the same order as tables 1-6 in Voight's paper. Note that A107169 and A139831 are in the same equivalence class.
In base 12, the sequence is 7, 87, X7, 167, 267, 327, 347, 427, 507, 587, 687, 747, 767, 907, 927, 9X7, X07, X87, XX7, E67, 1047, 12X7, 13X7, 1467, 1547, 1647, 1727, 1807, 1E27, 2007, 20X7, 2107, 21X7, 2267, 2287, 2347, 2367, 2607, 2687, 26X7, 2787, 2847, where X is for 10 and E is for 11. Moreover, the discriminant is X00 and that all elements are {7, 87, X7, 167, 187, 247} mod 260. - Walter Kehowski, May 31 2008

Crossrefs

Programs

  • Mathematica
    Union[QuadPrimes2[7, 4, 52, 10000], QuadPrimes2[7, -4, 52, 10000]] (* see A106856 *)

A139831 Primes of the form 2x^2+2xy+23y^2.

Original entry on oeis.org

2, 23, 47, 83, 107, 167, 227, 263, 347, 383, 443, 467, 503, 563, 587, 647, 683, 743, 827, 863, 887, 947, 983, 1103, 1163, 1187, 1223, 1283, 1307, 1367, 1427, 1487, 1523, 1583, 1607, 1667, 1787, 1823, 1847, 1907, 2003, 2027, 2063, 2087, 2207
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-180. See A139827 for more information.
Except for 2, also primes of the forms 3x^2+20y^2 (A107169) and 8x^2+4xy+23y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [2] cat[ p: p in PrimesUpTo(3000) | p mod 60 in {23, 47}]; // Vincenzo Librandi, Jul 29 2012
  • Mathematica
    QuadPrimes2[2, -2, 23, 10000] (* see A106856 *)

Formula

Except for 2, the primes are congruent to {23, 47} (mod 60).
Showing 1-3 of 3 results.