A107177 Primes of the form 3x^2+23y^2.
3, 23, 71, 131, 167, 239, 443, 587, 599, 683, 1163, 1223, 1319, 1427, 1451, 1499, 1559, 1619, 1979, 2027, 2099, 2243, 2339, 2447, 2543, 2579, 2663, 2927, 3083, 3167, 3251, 3347, 3359, 3371, 3491, 3623, 3659, 3767, 3911, 4079, 4463, 4583
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[3, 0, 23, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\23), if(isprime(t=w+23*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
Comments