cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107231 a(n) = C(n+2,2)*C(n,floor(n/2)).

Original entry on oeis.org

1, 3, 12, 30, 90, 210, 560, 1260, 3150, 6930, 16632, 36036, 84084, 180180, 411840, 875160, 1969110, 4157010, 9237800, 19399380, 42678636, 89237148, 194699232, 405623400, 878850700, 1825305300, 3931426800, 8143669800, 17450721000
Offset: 0

Views

Author

Paul Barry, May 13 2005

Keywords

Comments

Third column of A107230. Related to the generalized pentagonal numbers A001318. The sequence 0,0,1,3,12,... is an inverse Chebyshev transform of 0,0,1,3,8,... (see A034828). This transform maps a g.f. g(x) to (1/sqrt(1-4x^2))g(c(x^2)). Thus A001318, as first differences of A034828, can be expressed in terms of A107231.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 2, 2]*Binomial[n, Floor[n/2]], {n,0,50}] (* G. C. Greubel, Jun 13 2017 *)
  • PARI
    for(n=0,50, print1(binomial(n+2,2)*binomial(n,n\2), ", ")) \\ G. C. Greubel, Jun 13 2017

Formula

G.f.: (1+x)*(1-sqrt(1-4*x^2))^3*(sqrt(1-4*x^2)-4*x^2+1)^2/(8*x^4*(1-4*x^2)^(5/2)*(sqrt(1-4*x^2)+2*x-1)^2).
a(n) = Sum_{k=0..floor((n+2)/2)} binomial(n+2, k)*A034828(n+2-2*k). [corrected by Jason Yuen, Sep 02 2024]
Conjecture: n*a(n) +(n-4)*a(n-1) +2*(-2*n-5)*a(n-2) -4*n*a(n-3)=0. - R. J. Mathar, Nov 24 2012
G.f.: (1+x)/((1+2*x)^(3/2)*(1-2*x)^(5/2)). - Vladimir Reshetnikov, Aug 01 2018
Sum_{n>=0} 1/a(n) = Pi^2/9 - 2*Pi/sqrt(3) + 4. - Amiram Eldar, Sep 03 2024