cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034828 a(n) = floor(n^2/4)*(n/2).

Original entry on oeis.org

0, 0, 1, 3, 8, 15, 27, 42, 64, 90, 125, 165, 216, 273, 343, 420, 512, 612, 729, 855, 1000, 1155, 1331, 1518, 1728, 1950, 2197, 2457, 2744, 3045, 3375, 3720, 4096, 4488, 4913, 5355, 5832, 6327, 6859, 7410, 8000, 8610, 9261, 9933, 10648, 11385, 12167, 12972, 13824
Offset: 0

Views

Author

Keywords

Comments

Wiener index of cycle of length n.
a(n+1) is the sum of labeled number of boxes arranged as pyramid with base n. The sum of boxes is A002620(n+1). See the illustration in links. - Kival Ngaokrajang, Jul 02 2013

Examples

			G.f.: x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 27*x^6 + 42*x^7 + 64*x^8 + 90*x^9 + ...
		

Crossrefs

Equals A005996/2.
Partial sums of A001318.
Cf. A107231.
Cf. A062717.

Programs

  • Magma
    [Floor(n^2/4)*(n/2): n in [0..50]]; // G. C. Greubel, Feb 23 2018
  • Maple
    A034828:=n->n*floor(n^2/4)/2; seq(A034828(k), k=0..100); # Wesley Ivan Hurt, Nov 05 2013
  • Mathematica
    Table[Floor[n^2/4] n/2, {n, 0, 50}] (* Harvey P. Dale, Jun 10 2011 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 0, 1, 3, 8, 15}, 50] (* Harvey P. Dale, Jun 10 2011 *)
  • PARI
    {a(n) = (n^2 \ 4) * n / 2} /* Michael Somos, Sep 06 2008 */
    
  • PARI
    {a(n) = if( n<0, -a(-n), polcoeff( x^2 * (1 + x + x^2) / ((1 - x)^2 * (1 - x^2)^2) + x * O(x^n), n))} /* Michael Somos, Sep 06 2008 */
    

Formula

a(n) = (n^2-1)*n/8 if n is odd, otherwise n^3/8.
From Paul Barry, May 13 2005: (Start)
G.f.: x^2*(1+x+x^2)/((1-x)^2*(1-x^2)^2).
a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6).
a(n) = (2*n^3 +12*n^2 +23*n +14)/16 +(n+2)*(-1)^n/16.
a(n) = Sum_{k=0..floor((n+2)/2)} ((n+2)/(n+2-k))(-1)^k*C(n+2-k, k)* C(n-2*k+2, 2)*C(n-2*k, floor((n-2*k)/2)). [Typo corrected by R. J. Mathar, Aug 18 2008] (End)
a(n) = (2*n^2 - 1 + (-1)^n) * n / 16. - Michael Somos, Sep 06 2008
Euler transform of length 3 sequence [3, 2, -1]. - Michael Somos, Sep 06 2008
a(-n) = -a(n). - Michael Somos, Sep 06 2008
a(2n) = A000578(n). a(2n+1) = 3*A000330(n). a(n) = n*A002620(n)/2. - Michael Somos, Sep 06 2008
a(n) = (-n + Sum_{k=1..n} A007310(k)^2)/24. - Jesko Matthes, Feb 19 2021
Sum_{n>=2} 1/a(n) = 6 - 8*log(2) + zeta(3). - Amiram Eldar, Apr 16 2022
a(n) = Sum_{k=1..n} A062717(k)/4. - Sela Fried, Jun 27 2022

Extensions

Definition reworded by Michael Somos, Sep 06 2008

A107239 Sum of squares of tribonacci numbers (A000073).

Original entry on oeis.org

0, 0, 1, 2, 6, 22, 71, 240, 816, 2752, 9313, 31514, 106590, 360606, 1219935, 4126960, 13961456, 47231280, 159782161, 540539330, 1828631430, 6186215574, 20927817799, 70798300288, 239508933824, 810252920400, 2741065994769, 9272959837818, 31370198430718
Offset: 0

Views

Author

Jonathan Vos Post, May 17 2005

Keywords

Examples

			a(7) = 71 = 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2 + 7^2
		

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)) )); // G. C. Greubel, Nov 20 2021
    
  • Maple
    b:= proc(n) option remember; `if`(n<3, [n*(n-1)/2$2],
         (t-> [t, t^2+b(n-1)[2]])(add(b(n-j)[1], j=1..3)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 22 2021
  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1},{0,0,1},30]^2] (* Harvey P. Dale, Sep 11 2011 *)
    LinearRecurrence[{3,1,3,-7,1,-1,1}, {0,0,1,2,6,22,71}, 30] (* Ray Chandler, Aug 02 2015 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A107231(n): return sum(T(j)^2 for j in (0..n))
    [A107239(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

a(n) = T(0)^2 + T(1)^2 + ... + T(n)^2 where T(n) = A000073(n).
From R. J. Mathar, Aug 19 2008: (Start)
a(n) = Sum_{i=0..n} A085697(i).
G.f.: x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)). (End)
a(n+1) = A000073(n)*A000073(n+1) + ( (A000073(n+1) - A000073(n-1))^2 - 1 )/4 for n>0 [Jakubczyk]. - R. J. Mathar, Dec 19 2013

A107230 A number triangle of inverse Chebyshev transforms.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 6, 12, 12, 4, 1, 10, 30, 30, 20, 5, 1, 20, 60, 90, 60, 30, 6, 1, 35, 140, 210, 210, 105, 42, 7, 1, 70, 280, 560, 560, 420, 168, 56, 8, 1, 126, 630, 1260, 1680, 1260, 756, 252, 72, 9, 1, 252, 1260, 3150, 4200, 4200, 2520, 1260, 360, 90, 10, 1
Offset: 0

Views

Author

Paul Barry, May 13 2005

Keywords

Comments

First column is A001405, second column is A100071, third column is A107231. Row sums are A005773(n+1), diagonal sums are A026003. The inverse Chebyshev transform concerned takes a g.f. g(x)->(1/sqrt(1-4x^2))g(xc(x^2)) where c(x) is the g.f. of A000108. It transforms a(n) to b(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*a(n-2k). Then a(n) = Sum_{k=0..floor(n/2)} (n/(n-k))*(-1)^k*binomial(n-k,k) *b(n-2k).
Triangle read by rows: T(n,k) is the number of paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., left factors of Motzkin paths) and having k H steps. Example: T(3,1)=6 because we have HUD. HUU, UDH, UHD, UHU and UUH. Sum_{k=0..n} k*T(n,k) = A132894(n). - Emeric Deutsch, Oct 07 2007

Examples

			Triangle begins
   1;
   1,  1;
   2,  2,  1;
   3,  6,  3,  1;
   6, 12, 12,  4,  1;
  10, 30, 30, 20,  5,  1;
		

Crossrefs

Cf. A132894.

Programs

  • Magma
    [[Binomial(n, k)*Binomial(n-k, Floor((n-k)/2)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 11 2019
    
  • Maple
    T:=proc(n,k) options operator, arrow: binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k)) end proc: for n from 0 to 11 do seq(T(n,k),k=0..n) end do; # yields sequence in triangular form - Emeric Deutsch, Oct 07 2007
  • Mathematica
    Table[Binomial[n, k]*Binomial[n-k, Floor[(n-k)/2]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2019 *)
  • PARI
    T(n, k) = binomial(n, k)*binomial(n-k, (n-k)\2); \\ Michel Marcus, Feb 10 2019
    
  • Sage
    [[binomial(n, k)*binomial(n-k, floor((n-k)/2)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 11 2019

Formula

T(n,k) = binomial(n,k)*binomial(n-k, floor((n-k)/2)).
G.f.: G=G(t,z) satisfies z*(1-2*z-t*z)*G^2+(1-2*z-t*z)*G-1=0. - Emeric Deutsch, Oct 07 2007
E.g.f.: exp(x*y)*(BesselI(0,2*x)+BesselI(1,2*x)). - Vladeta Jovovic, Dec 02 2008
Showing 1-3 of 3 results.