cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A085697 a(n) = T(n)^2, where T(n) = A000073(n) is the n-th tribonacci number.

Original entry on oeis.org

0, 0, 1, 1, 4, 16, 49, 169, 576, 1936, 6561, 22201, 75076, 254016, 859329, 2907025, 9834496, 33269824, 112550881, 380757169, 1288092100, 4357584144, 14741602225, 49870482489, 168710633536, 570743986576, 1930813074369, 6531893843049
Offset: 0

Views

Author

Emanuele Munarini, Jul 18 2003

Keywords

Comments

In general, squaring the terms of a third-order linear recurrence with signature (x,y,z) will result in a sixth-order recurrence with signature (x^2 + y, x^2*y + z*x + y^2, x^3*z + 4*x*y*z - y^3 + 2*z^2, x^2*z^2 - x*y^2*z - z^2*y, z^2*y^2 - z^3*x, -z^4). - Gary Detlefs, Jan 10 2023

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)) )); // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    LinearRecurrence[{2,3,6,-1,0,-1},{0,0,1,1,4,16},30] (* Harvey P. Dale, Oct 26 2020 *)
  • Maxima
    t[0]:0$  t[1]:0$  t[2]:1$
    t[n]:=t[n-1]+t[n-2]+t[n-3]$
    makelist(t[n]^2,n,0,40); /* Emanuele Munarini, Mar 01 2011 */
    
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A085697(n): return T(n)^2
    [A085697(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: x^2*( 1-x-x^2-x^3 )/( (1-3*x-x^2-x^3)*(1+x+x^2-x^3) ).
a(n+6) = 2*a(n+5) + 3*a(n+4) + 6*a(n+3) - a(n+2) - a(n).
a(n) = (-A057597(n-2) + 3*A057597(n-1) + 6*A057597(n) + 5*A113300(n-1) - A099463(n-2))/11. - R. J. Mathar, Aug 19 2008

Extensions

Offset corrected to match A000073 by N. J. A. Sloane, Sep 12 2020
Name corrected to match corrected offset by Michael A. Allen, Jun 10 2021

A107246 Sum of squares of octanacci numbers (Fibonacci 8-step numbers).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, 345952, 1378208, 5490992, 21877296, 87163696, 347276080, 1383600944, 5512434480, 21962292529, 87500852554, 348615720590, 1388934122190, 5533708922574, 22047074027470
Offset: 0

Views

Author

Jonathan Vos Post, May 27 2005

Keywords

Comments

Primes in this sequence include: a(8) = 2, a(17) = 280927. Semiprimes in this sequence include: a(9) = 6 = 2 * 3, a(10) = 22 = 2 * 11, a(11) = 86 = 2 * 43, a(13) = 1366 = 2 * 683, a(14) = 5462 = 2 * 2731, a(24) = 5512110374 = 2 * 2756055187, a(25) = 21961968423 = 3 * 7320656141, a(36) = 88177707994468342 = 2 * 44088853997234171.

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1,1,1,1,1,1},{0,0,0,0,0,0,0,1},40]^2] (* Harvey P. Dale, May 25 2014 *)
    LinearRecurrence[{3, 2, 4, 8, 14, 30, 60, 120, -266, -24, -38, -32, 120, -22, -50, -64, 136, 16, 30, 22, -68, 0, 10, 18, -28, 0, -6, -8, 14, 0, 0, -2, 2, 0, 0, 1, -1},{0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, 345952, 1378208, 5490992, 21877296, 87163696, 347276080, 1383600944, 5512434480, 21962292529, 87500852554, 348615720590, 1388934122190, 5533708922574, 22047074027470, 87838639467470, 349961474550734, 1394295671696334, 5555069815204303, 22132178477202944, 88177707994792448},31] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = F_8(0)^2 + F_8(1)^2 + ... F_8(n)^2, where F_8(n) = A079262(n).

Extensions

Corrected from a(16) on by R. J. Mathar, Aug 11 2009

A107245 Sum of squares of heptanacci numbers (Fibonacci 7-step numbers).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, 339616, 1347632, 5347632, 21219888, 84199984, 334092848, 1325649969, 5260075594, 20871578510, 82816815054, 328610657230, 1303901211854, 5173777051854, 20529140314318
Offset: 0

Views

Author

Jonathan Vos Post, May 20 2005

Keywords

Comments

Primes include: a(7) = 2. Semiprimes include a(8) = 6 = 2 * 3, a(9) = 22 = 2 * 11, a(10) = 86 = 2 * 43, a(12) = 1366 = 2 * 683, a(13) = 5462 = 2 * 2731.

Examples

			a(0) = 0 = 0^2
a(1) = 0 = 0^2 + 0^2
a(2) = 0 = 0^2 + 0^2 + 0^2
a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2
a(4) = 0 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2
a(5) = 0 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2
a(6) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2
a(7) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2
a(8) = 6 = 0^2 + 0^2 + 0^2+ 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2
a(9) = 22 = 0^2 + 0^2 +0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2 = 2*11
a(10) = 86 = 8^2 + 22
a(11) = 342 = 16^2 + 86
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 2, 4, 7, 15, 30, 60, -131, -9, -8, 28, -11, -25, -32, 68, 5, 5, -10, 0, 5, 9, -14, 0, -1, 1, 0, 0, -1, 1},{0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, 339616, 1347632, 5347632, 21219888, 84199984, 334092848, 1325649969, 5260075594, 20871578510, 82816815054, 328610657230, 1303901211854, 5173777051854},30] (* Ray Chandler, Aug 02 2015 *)
    Accumulate[LinearRecurrence[{1,1,1,1,1,1,1},{0,0,0,0,0,0,1},30]^2] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = F_7(0)^2 + F_7(1)^2 + ... F_7(n)^2, note that F_7(n) = A066178(n) with corrected offset (from leading zeros). a(0) = 0, a(n+1) = a(n) + F_7(n)^2.

Extensions

a(14) inserted by R. J. Mathar, Aug 11 2009

A107247 Sum of squares of nonacci numbers (Fibonacci 9-step numbers).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, 348503, 1390944, 5552544, 22166320, 88491056, 353269040, 1410299184, 5630100784, 22476064048, 89727075632, 358201316657, 1429983219018, 5708667195022, 22789694921422
Offset: 0

Views

Author

Jonathan Vos Post, May 29 2005

Keywords

Comments

Primes in this sequence include: a(9) = 2, which is next? Semiprimes in this sequence include: a(10) = 6 = 2 * 3, a(11) = 22 = 2 * 11, a(12) = 86 = 2 * 43, a(14) = 1366 = 2 * 683, a(15) = 5462 = 2 * 2731, a(17) = 87382 = 2 * 43691, a(18) = 348503 = 37 * 9419, a(28) = 358201316657 = 71 * 5045088967.

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1,1,1,1,1,1,1},{0,0,0,0,0,0,0,0,1},31]^2]  (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = F_9(0)^2 + F_9(1)^2 + ... F_9(n)^2, where F_9(n) = A104144(n).

A107244 Sum of squares of hexanacci numbers (A001592, Fibonacci 6-step numbers).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, 324528, 1277104, 5025200, 19770800, 77789489, 306071370, 1204272270, 4738336974, 18643463374, 73354544590, 288620849614, 1135607911375, 4468164041216, 17580442344960
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2005

Keywords

Comments

Primes include: a(6) = 2. Semiprimes include a(7) = 6 = 2 * 3, a(8) = 22 = 2 * 11, a(9) = 86 = 2 * 43, a(11) = 1366 = 2 * 683, a(19) = 77789489 = 3989 * 19501, a(23) = 18643463374 = 2 * 9321731687,

Examples

			a(0) = 0 = 0^2
a(1) = 0 = 0^2 + 0^2
a(2) = 0 = 0^2 + 0^2 + 0^2
a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2
a(4) = 0 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2
a(5) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2
a(6) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2
a(7) = 6 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2
a(8) = 22 = 0^2 + 0^2 +0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2
		

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1,1,1,1},{0,0,0,0,0,1},50]^2] (* Harvey P. Dale, Jan 19 2012 *)
    LinearRecurrence[{3, 2, 4, 6, 14, 28, -67, -9, -8, 28, -8, -12, 20, 5, 5, -10, 0, 2, -2, 0, -1, 1},{0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, 324528, 1277104, 5025200, 19770800, 77789489, 306071370, 1204272270},29] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = F_6(0)^2 + F_6(1)^2 + ... F_6(n)^2, where F_6(n) = A001592(n). a(0) = 0, a(n+1) = a(n) + A001592(n).
a(n)= 3*a(n-1) +2*a(n-2) +4*a(n-3) +6*a(n-4) +14*a(n-5) +28*a(n-6) -67*a(n-7) -9*a(n-8) -8*a(n-9) +28*a(n-10) -8*a(n-11) -12*a(n-12) +20*a(n-13) +5*a(n-14) +5*a(n-15) -10*a(n-16) +2*a(n-18) -2*a(n-19) -a(n-21) +a(n-22). [From R. J. Mathar, Aug 11 2009]

A107240 Sum of squares of first n tribonacci numbers (A000213).

Original entry on oeis.org

1, 2, 3, 12, 37, 118, 407, 1368, 4617, 15642, 52891, 178916, 605325, 2047726, 6927407, 23435376, 79281105, 268206130, 907335091, 3069492092, 10384017717, 35128880742, 118840150983, 402033352264, 1360069089113, 4601080768074
Offset: 1

Views

Author

Jonathan Vos Post, May 14 2005

Keywords

Examples

			a(6) = 1^2 + 1^2 + 1^2 + 3^2 + 5^2 + 9^2 = 118.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1},{1,1,1},30]^2] (* Harvey P. Dale, Nov 11 2011 *)
    LinearRecurrence[{3, 1, 3, -7, 1, -1, 1},{1, 2, 3, 12, 37, 118, 407},26] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = Sum_{i=1..n} A000213(i)^2.
a(n)= 3*a(n-1) +a(n-2) +3*a(n-3) -7*a(n-4) +a(n-5) -a(n-6) +a(n-7). G.f.: (x^3-x^2+3*x-1)*(1+x)^2/((x-1)*(x^3+x^2+3*x-1)*(x^3-x^2-x-1)). - R. J. Mathar, Aug 11 2009

A107243 Sum of squares of pentanacci numbers (A001591).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160, 4337009, 16762634, 64787534, 250400910, 967783566, 3740437902, 14456621263, 55874162432, 215950971648, 834640190272, 3225844698176, 12467736540480
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2005

Keywords

Examples

			a(0) = 0 = 0^2 since F_5(0) = A001591(0) = 0.
a(1) = 0 = 0^2 + 0^2
a(2) = 0 = 0^2 + 0^2 + 0^2
a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2
a(4) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2
a(5) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2
a(6) = 6 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2
a(7) = 22 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2
a(8) = 86 = 8^2 + 22
a(9) = 342 = 16^2 + 86
		

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1,1,1},{0,0,0,0,1},30]^2] (* Harvey P. Dale, Jan 04 2015 *)
    LinearRecurrence[{3, 2, 3, 7, 14, -32, -2, 6, -4, -6, 10, 1, -1, 0, 1, -1},{0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160},28] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = F_5(1)^2 + F_5(1)^2 + F_5(2)^2 + ... F_5(n)^2 where F_5(n) = A001591(n). a(0) = 0, a(n+1) = a(n) + A001591(n)^2.
a(n)= 3*a(n-1) +2*a(n-2) +3*a(n-3) +7*a(n-4) +14*a(n-5) -32*a(n-6) -2*a(n-7) +6*a(n-8) -4*a(n-9) -6*a(n-10) +10*a(n-11) +a(n-12) -a(n-13) +a(n-15) -a(n-16). [R. J. Mathar, Aug 11 2009]
G.f.: x^4*(x^10 +x^9 +x^7 +x^6 -6*x^5 -5*x^4 -3*x^3 -2*x^2 -x +1) / ((x -1)*(x^5 +x^4 +x^3 +3*x^2 +3*x -1)*(x^10 -x^9 -x^7 +x^6 -6*x^5 +3*x^4 +3*x^3 +2*x^2 +x +1)). - Colin Barker, May 08 2013

Extensions

a(26) and a(27) corrected by R. J. Mathar, Aug 11 2009

A337284 a(n) = Sum_{i=1..n} (i-1)*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.

Original entry on oeis.org

0, 1, 3, 15, 79, 324, 1338, 5370, 20858, 79907, 301917, 1127753, 4175945, 15347222, 56045572, 203563012, 735880196, 2649245173, 9502874215, 33976624115, 121128306995, 430701953720, 1527852568478, 5408197139806, 19106052817630, 67376379676855, 237205619596129, 833831061604429, 2926954896983117
Offset: 1

Views

Author

N. J. A. Sloane, Sep 12 2020

Keywords

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. (Note that this paper uses an offset for the tribonacci numbers that is different from that used in A000073).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1-2*x+2*x^2+12*x^3+8*x^5+2*x^6+4*x^7+3*x^8+2*x^9)/((1-x)*(1-2*x-3*x^2-6*x^3+x^4+x^6)^2) )); // G. C. Greubel, Nov 22 2021
    
  • Mathematica
    T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]];
    a[n_]:= a[n]= Sum[(j-1)*T[j]^2, {j,0,n}];
    Table[a[n], {n,40}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A337284(n): return sum( (j-1)*T(j)^2 for j in (0..n) )
    [A337284(n) for n in (1..40)] # G. C. Greubel, Nov 22 2021

Formula

Schumacher (on page 194) gives two explicit formulas for a(n) in terms of tribonacci numbers.
From Colin Barker, Sep 14 2020: (Start)
G.f.: x^2*(1 - 2*x + 2*x^2 + 12*x^3 + 8*x^5 + 2*x^6 + 4*x^7 + 3*x^8 + 2*x^9) / ((1 - x)*(1 + x + x^2 - x^3)^2*(1 - 3*x - x^2 - x^3)^2)
a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3) - 35*a(n-4) + 3*a(n-5) + 48*a(n-7) - 11*a(n-8) + 7*a(n-9) - 14*a(n-10) + 2*a(n-11) - a(n-12) + a(n-13) for n>13.
(End)
a(n) = A337283(n) - A107239(n). - G. C. Greubel, Nov 22 2021

A107241 Sum of squares of first n tetranacci numbers (A000288).

Original entry on oeis.org

1, 2, 3, 4, 20, 69, 238, 863, 3264, 12100, 44861, 166662, 619591, 2301800, 8551800, 31774561, 118060082, 438649107, 1629796276, 6055504952, 22499207241, 83595676570, 310599326171, 1154030334396, 4287794153932, 15931278338957
Offset: 1

Views

Author

Jonathan Vos Post, May 14 2005

Keywords

Comments

Tetranacci numbers are also called Fibonacci 4-step numbers. a(n) is prime for n = 2, 3, 8, 26, ... a(n) is semiprime for n = 4, 6, 11, 13, ... a(10) = 12100 = 94^2 + 3264 = 110^2 = 2^2 * 5^2 * 11^2. For Fibonacci numbers (A000045) F(i) we have Sum_{i=1..n} F(i) = F(n)*F(n+1).

Examples

			a(1) = 1^2 = 1.
a(2) = 1^2 + 1^2 = 1.
a(3) = 1^2 + 1^2 + 1^2 = 3, prime.
a(4) = 1^2 + 1^2 + 1^2 + 1^2 = 4 = 2^2, semiprime.
a(5) = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 = 20.
a(6) = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2 = 69 = 3 * 23, semiprime.
a(8) = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2 + 13^2 + 25^2 = 863, prime.
		

Crossrefs

Programs

  • Maple
    T:= proc(n) option remember;
          if n=0 then 0
        elif n<5 then 1
        else add(T(n-j), j=1..4)
          fi; end:
    seq( add(T(k)^2, k=1..n), n=1..30); # G. C. Greubel, Dec 18 2019
  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1,1},{1,1,1,1},30]^2] (* Harvey P. Dale, Feb 14 2012 *)
    LinearRecurrence[{3,2,2,6,-16,-2,6,-2,2,1,-1}, {1,2,3,4,20,69,238,863,3264, 12100,44861}, 30] (* Ray Chandler, Aug 02 2015 *)
    T[n_]:= T[n]= If[n == 0, 0, If[n < 5, 1, Sum[T[n-j], {j,4}]]]; a[n_]:= Sum[T[j]^2, {j,n}]; Table[a[n], {n, 30}] (* G. C. Greubel, Dec 18 2019 *)
  • Sage
    @CachedFunction
    def T(n):
        if (n==0): return 0
        elif (n<5): return 1
        else: return sum(T(n-j) for j in (1..4))
    def a(n): return sum(T(j)^2 for j in (1..n))
    [a(n) for n in (1..30)] # G. C. Greubel, Dec 18 2019

Formula

a(n) = Sum_{i=1..n} A000288(i)^2.
From R. J. Mathar, Aug 11 2009: (Start)
a(n) = 3*a(n-1) + 2*a(n-2) + 2*a(n-3) + 6*a(n-4) - 16*a(n-5) - 2*a(n-6) + 6*a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11).
G.f.: (1 - x - 5*x^2 - 11*x^3 - 8*x^4 - x^5 - x^6 - 7*x^7 + x^8 + 4*x^9)/((1 - x)*(1 - 3*x - 3*x^2 + x^3 + x^4)(1 + x + 2*x^2 + 2*x^3 - 2*x^4 + x^5 - x^6)). (End)

A107242 Sum of squares of tetranacci numbers (A001630).

Original entry on oeis.org

0, 0, 1, 5, 14, 50, 194, 723, 2659, 9884, 36780, 136636, 507517, 1885793, 7006962, 26034006, 96728470, 359395319, 1335332919, 4961420008, 18434129192, 68491926888, 254481427113, 945524491213, 3513091674982, 13052875206698
Offset: 0

Views

Author

Jonathan Vos Post, May 18 2005

Keywords

Examples

			a(0) = 0 = 0^2,
a(1) = 0 = 0^2 + 0^2
a(2) = 1 = 0^2 + 0^2 + 1^2
a(3) = 5 = 0^2 + 0^2 + 1^2 + 2^2
a(4) = 14 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2
a(5) = 50 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2 + 6^2
a(6) = 194 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2 + 6^2 + 12^2
a(7) = 723 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2 + 6^2 + 12^2 + 23^2
a(8) = 2659 = 0^2 + 0^2 + 1^2 + 2^2 + 3^2 + 6^2 + 12^2 + 23^2 + 44^2
		

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1,1},{0,0,1,2},40]^2] (* or *) LinearRecurrence[{3,2,2,6,-16,-2,6,-2,2,1,-1},{0,0,1,5,14,50,194,723,2659,9884,36780},40] (* Harvey P. Dale, Aug 25 2013 *)

Formula

a(n) = F_4(1)^2 + F_4(1)^2 + F_4(2)^2 + ... F_4(n)^2 where F_4(n) = A001630(n). a(0) = 0, a(n+1) = a(n) + A001630(n)^2.
a(n)= 3*a(n-1) +2*a(n-2) +2*a(n-3) +6*a(n-4) -16*a(n-5) -2*a(n-6) +6*a(n-7) -2*a(n-8) +2*a(n-9) +a(n-10) -a(n-11). G.f.: x^2*(1+x)*(x^6-x^5-4*x^2+x+1)/((x-1) *(x^4+x^3-3*x^2-3*x+1) *(x^6-x^5+2*x^4-\ 2*x^3-2*x^2-x-1)). [R. J. Mathar, Aug 11 2009]

Extensions

a(13) and a(23) corrected by R. J. Mathar, Aug 11 2009
Showing 1-10 of 14 results. Next