cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107239 Sum of squares of tribonacci numbers (A000073).

Original entry on oeis.org

0, 0, 1, 2, 6, 22, 71, 240, 816, 2752, 9313, 31514, 106590, 360606, 1219935, 4126960, 13961456, 47231280, 159782161, 540539330, 1828631430, 6186215574, 20927817799, 70798300288, 239508933824, 810252920400, 2741065994769, 9272959837818, 31370198430718
Offset: 0

Views

Author

Jonathan Vos Post, May 17 2005

Keywords

Examples

			a(7) = 71 = 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2 + 7^2
		

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)) )); // G. C. Greubel, Nov 20 2021
    
  • Maple
    b:= proc(n) option remember; `if`(n<3, [n*(n-1)/2$2],
         (t-> [t, t^2+b(n-1)[2]])(add(b(n-j)[1], j=1..3)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 22 2021
  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1},{0,0,1},30]^2] (* Harvey P. Dale, Sep 11 2011 *)
    LinearRecurrence[{3,1,3,-7,1,-1,1}, {0,0,1,2,6,22,71}, 30] (* Ray Chandler, Aug 02 2015 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A107231(n): return sum(T(j)^2 for j in (0..n))
    [A107239(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

a(n) = T(0)^2 + T(1)^2 + ... + T(n)^2 where T(n) = A000073(n).
From R. J. Mathar, Aug 19 2008: (Start)
a(n) = Sum_{i=0..n} A085697(i).
G.f.: x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)). (End)
a(n+1) = A000073(n)*A000073(n+1) + ( (A000073(n+1) - A000073(n-1))^2 - 1 )/4 for n>0 [Jakubczyk]. - R. J. Mathar, Dec 19 2013

A107240 Sum of squares of first n tribonacci numbers (A000213).

Original entry on oeis.org

1, 2, 3, 12, 37, 118, 407, 1368, 4617, 15642, 52891, 178916, 605325, 2047726, 6927407, 23435376, 79281105, 268206130, 907335091, 3069492092, 10384017717, 35128880742, 118840150983, 402033352264, 1360069089113, 4601080768074
Offset: 1

Views

Author

Jonathan Vos Post, May 14 2005

Keywords

Examples

			a(6) = 1^2 + 1^2 + 1^2 + 3^2 + 5^2 + 9^2 = 118.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1},{1,1,1},30]^2] (* Harvey P. Dale, Nov 11 2011 *)
    LinearRecurrence[{3, 1, 3, -7, 1, -1, 1},{1, 2, 3, 12, 37, 118, 407},26] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = Sum_{i=1..n} A000213(i)^2.
a(n)= 3*a(n-1) +a(n-2) +3*a(n-3) -7*a(n-4) +a(n-5) -a(n-6) +a(n-7). G.f.: (x^3-x^2+3*x-1)*(1+x)^2/((x-1)*(x^3+x^2+3*x-1)*(x^3-x^2-x-1)). - R. J. Mathar, Aug 11 2009
Showing 1-2 of 2 results.