cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A107239 Sum of squares of tribonacci numbers (A000073).

Original entry on oeis.org

0, 0, 1, 2, 6, 22, 71, 240, 816, 2752, 9313, 31514, 106590, 360606, 1219935, 4126960, 13961456, 47231280, 159782161, 540539330, 1828631430, 6186215574, 20927817799, 70798300288, 239508933824, 810252920400, 2741065994769, 9272959837818, 31370198430718
Offset: 0

Views

Author

Jonathan Vos Post, May 17 2005

Keywords

Examples

			a(7) = 71 = 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2 + 7^2
		

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)) )); // G. C. Greubel, Nov 20 2021
    
  • Maple
    b:= proc(n) option remember; `if`(n<3, [n*(n-1)/2$2],
         (t-> [t, t^2+b(n-1)[2]])(add(b(n-j)[1], j=1..3)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 22 2021
  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1},{0,0,1},30]^2] (* Harvey P. Dale, Sep 11 2011 *)
    LinearRecurrence[{3,1,3,-7,1,-1,1}, {0,0,1,2,6,22,71}, 30] (* Ray Chandler, Aug 02 2015 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A107231(n): return sum(T(j)^2 for j in (0..n))
    [A107239(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

a(n) = T(0)^2 + T(1)^2 + ... + T(n)^2 where T(n) = A000073(n).
From R. J. Mathar, Aug 19 2008: (Start)
a(n) = Sum_{i=0..n} A085697(i).
G.f.: x^2*(1-x-x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)*(1-x)). (End)
a(n+1) = A000073(n)*A000073(n+1) + ( (A000073(n+1) - A000073(n-1))^2 - 1 )/4 for n>0 [Jakubczyk]. - R. J. Mathar, Dec 19 2013

A188747 T(n,k)=Number of nXk binary arrays without the pattern 1 1 1 diagonally, vertically or antidiagonally.

Original entry on oeis.org

2, 4, 4, 8, 16, 7, 16, 64, 49, 13, 32, 256, 292, 169, 24, 64, 1024, 1723, 1651, 576, 44, 128, 4096, 10327, 17286, 9504, 1936, 81, 256, 16384, 61996, 184411, 176002, 52072, 6561, 149, 512, 65536, 371641, 1944586, 3283906, 1605680, 289776, 22201, 274, 1024
Offset: 1

Views

Author

R. H. Hardin Apr 09 2011

Keywords

Comments

Table starts
...2......4........8..........16............32..............64
...4.....16.......64.........256..........1024............4096
...7.....49......292........1723.........10327...........61996
..13....169.....1651.......17286........184411.........1944586
..24....576.....9504......176002.......3283906........60714322
..44...1936....52072.....1605680......50067824......1536573216
..81...6561...289776....15398676.....828466161.....43558358008
.149..22201..1617326...148041805...13666030547...1229158478968
.274..75076..8992115..1404107414..221062541460..33715030639152
.504.254016.50039730.13398153644.3615827505717.940176798492406

Examples

			Some solutions for 5X3
..0..1..1....1..0..1....1..0..0....1..1..0....0..0..0....0..1..0....1..1..1
..1..0..0....0..0..0....0..0..0....1..0..1....1..0..0....0..0..0....0..0..1
..1..0..0....0..0..1....1..1..0....0..0..0....0..0..0....1..0..0....0..0..0
..0..0..0....1..1..0....0..0..0....1..1..0....0..0..1....0..0..1....0..1..1
..1..0..1....0..1..0....0..1..0....0..1..1....1..0..0....1..1..1....1..0..0
		

Crossrefs

Column 1 is A000073(n+3)
Column 2 is A085697(n+1)

A188874 T(n,k)=Number of nXk binary arrays without the pattern 0 0 0 antidiagonally or horizontally.

Original entry on oeis.org

2, 4, 4, 7, 16, 8, 13, 49, 64, 16, 24, 169, 316, 256, 32, 44, 576, 1901, 2032, 1024, 64, 81, 1936, 11332, 21937, 13045, 4096, 128, 149, 6561, 65656, 233756, 252932, 83737, 16384, 256, 274, 22201, 385700, 2368612, 4805140, 2915832, 537496, 65536, 512, 504
Offset: 1

Views

Author

R. H. Hardin Apr 12 2011

Keywords

Comments

Table starts
....2.......4.........7..........13.............24...............44
....4......16........49.........169............576.............1936
....8......64.......316........1901..........11332............65656
...16.....256......2032.......21937.........233756..........2368612
...32....1024.....13045......252932........4805140.........84965120
...64....4096.....83737.....2915832.......98892196.......3043939392
..128...16384....537496....33617513.....2035428944.....109002398784
..256...65536...3450100...387583973....41894114820....3903192037184
..512..262144..22145617..4468546833...862288002496..139764515932928
.1024.1048576.142149013.51518943080.17748103310980.5004636736643072

Examples

			Some solutions for 5X3
..1..0..1....1..0..0....0..1..1....1..0..0....0..0..1....1..0..0....0..1..0
..0..1..1....1..0..0....1..0..0....1..0..1....0..1..1....1..0..0....0..1..1
..1..1..0....1..1..0....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0
..1..1..1....0..1..0....1..1..1....0..0..1....1..0..0....1..0..0....0..1..1
..1..0..0....1..1..0....1..1..0....1..1..0....1..0..0....0..0..1....1..0..1
		

Crossrefs

Column 2 is Column 1 squared
Row 1 is A000073(n+3)
Row 2 is A085697(n+1)

A206871 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 7, 16, 7, 13, 49, 49, 12, 24, 169, 211, 144, 21, 44, 576, 1153, 889, 441, 37, 81, 1936, 6139, 7675, 3967, 1369, 65, 149, 6561, 31529, 63866, 55063, 17737, 4225, 114, 274, 22201, 165783, 502864, 728935, 397221, 78799, 12996, 200, 504, 75076, 867545
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Table starts
...2.....4......7.......13.........24..........44............81.............149
...4....16.....49......169........576........1936..........6561...........22201
...7....49....211.....1153.......6139.......31529........165783..........867545
..12...144....889.....7675......63866......502864.......4108471........33311703
..21...441...3967....55063.....728935.....8942469.....115505069......1476136671
..37..1369..17737...397221....8373905...159327093....3254925997.....65503023421
..65..4225..78799..2841311...95207761..2805723059...90497940567...2863087460903
.114.12996.350017.20294131.1080443638.49382253588.2513905109615.125050630010443

Examples

			Some solutions for n=4 k=3
..1..1..0....1..1..0....1..0..0....0..0..1....0..1..0....1..1..1....0..0..1
..0..0..1....0..0..1....0..0..1....0..0..1....1..0..1....1..1..0....0..0..1
..0..0..1....0..0..1....0..0..1....1..1..1....0..0..1....1..0..0....0..0..1
..1..0..0....0..1..1....0..1..1....0..0..1....0..1..0....1..0..1....1..1..1
		

Crossrefs

Column 1 is A005251(n+3)
Column 2 is A188501
Row 1 is A000073(n+3)
Row 2 is A085697(n+1)

A207088 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 horizontally and 0 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 7, 16, 7, 13, 49, 49, 12, 24, 169, 241, 144, 20, 44, 576, 1393, 1117, 400, 33, 81, 1936, 7915, 10621, 4891, 1089, 54, 149, 6561, 44065, 98824, 75221, 20953, 2916, 88, 274, 22201, 248525, 894720, 1128580, 518001, 88465, 7744, 143, 504, 75076, 1398065
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Table starts
..2....4......7.......13.........24..........44............81.............149
..4...16.....49......169........576........1936..........6561...........22201
..7...49....241.....1393.......7915.......44065........248525.........1398065
.12..144...1117....10621......98824......894720.......8244759........75709453
.20..400...4891....75221....1128580....16421568.....243794389......3604761693
.33.1089..20953...518001...12462017...289951889....6897033117....163328551845
.54.2916..88465..3500117..134515416..4992838052..189659424011...7170730063393
.88.7744.370753.23428181.1435875920.84911938560.5142718466575.309962689144609

Examples

			Some solutions for n=4 k=3
..0..1..1....0..1..0....1..1..1....1..0..0....1..1..0....0..0..1....1..0..0
..0..1..1....1..0..0....1..1..1....0..0..1....0..0..1....1..0..0....1..0..1
..0..1..1....1..0..0....0..1..0....1..0..1....1..1..1....0..0..1....1..0..1
..0..1..1....1..0..0....0..1..0....0..0..1....1..0..0....0..0..1....1..0..1
		

Crossrefs

Column 1 is A000071(n+3)
Column 2 is A188516
Row 1 is A000073(n+3)
Row 2 is A085697(n+1)

A206936 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 horizontally and 0 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 7, 16, 7, 13, 49, 49, 12, 24, 169, 211, 144, 20, 44, 576, 1153, 811, 400, 33, 81, 1936, 6139, 6837, 2791, 1089, 54, 149, 6561, 31529, 55088, 35277, 9055, 2916, 88, 274, 22201, 165783, 410000, 418876, 170409, 28081, 7744, 143, 504, 75076, 867545
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Table starts
..2....4.....7......13........24.........44..........81...........149
..4...16....49.....169.......576.......1936........6561.........22201
..7...49...211....1153......6139......31529......165783........867545
.12..144...811....6837.....55088.....410000.....3227589......25102409
.20..400..2791...35277....418876....4293648....48992069.....546661165
.33.1089..9055..170409...2967939...40316253...659747611...10405676997
.54.2916.28081..783557..20054092..348614952..8138711727..180107729045
.88.7744.84403.3498981.132811808.2858059128.95444167901.2968348851593

Examples

			Some solutions for n=4 k=3
..0..0..1....1..1..1....0..1..1....1..1..0....0..0..1....0..0..1....0..1..0
..0..1..1....1..1..0....1..1..0....0..0..1....0..0..1....0..0..1....1..0..1
..0..0..1....1..0..1....0..1..1....0..1..0....0..0..1....1..0..1....0..1..0
..0..1..0....1..1..0....1..0..0....0..0..1....1..1..1....0..0..1....1..0..0
		

Crossrefs

Column 1 is A000071(n+3)
Column 2 is A188516
Row 1 is A000073(n+3)
Row 2 is A085697(n+1)
Row 3 is A206872

A207182 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 7, 16, 7, 13, 49, 49, 12, 24, 169, 241, 144, 21, 44, 576, 1393, 1171, 441, 37, 81, 1936, 7915, 11227, 5917, 1369, 65, 149, 6561, 44065, 105836, 95299, 30067, 4225, 114, 274, 22201, 248525, 981850, 1507355, 816667, 151981, 12996, 200, 504, 75076
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Table starts
...2.....4......7.......13.........24...........44.............81
...4....16.....49......169........576.........1936...........6561
...7....49....241.....1393.......7915........44065.........248525
..12...144...1171....11227.....105836.......981850........9196215
..21...441...5917....95299....1507355.....23471595......368714705
..37..1369..30067...816667...21722593....567046841....14960137403
..65..4225.151981..6951227..310484943..13575513917...600838995529
.114.12996.767377.59040685.4425513760.324280404464.24069606968809

Examples

			Some solutions for n=4 k=3
..0..0..1....0..1..0....0..1..1....0..0..1....1..0..0....1..0..0....1..1..1
..0..0..1....1..0..1....0..1..1....0..0..1....0..0..1....1..0..1....1..1..0
..1..1..1....1..0..1....0..1..1....1..0..1....1..0..1....1..0..1....1..0..1
..1..1..0....1..1..0....0..1..1....1..0..0....1..1..1....1..0..1....1..1..1
		

Crossrefs

Column 1 is A005251(n+3)
Column 2 is A188501
Row 1 is A000073(n+3)
Row 2 is A085697(n+1)
Row 3 is A207089

A188567 T(n,k)=Number of nXk binary arrays without the pattern 1 1 1 diagonally, vertically or horizontally.

Original entry on oeis.org

2, 4, 4, 7, 16, 7, 13, 49, 49, 13, 24, 169, 247, 169, 24, 44, 576, 1383, 1383, 576, 44, 81, 1936, 7722, 13306, 7722, 1936, 81, 149, 6561, 42712, 127951, 127951, 42712, 6561, 149, 274, 22201, 237116, 1204078, 2109386, 1204078, 237116, 22201, 274, 504, 75076
Offset: 1

Views

Author

R. H. Hardin Apr 04 2011

Keywords

Comments

Table starts
...2......4........7.........13............24..............44
...4.....16.......49........169...........576............1936
...7.....49......247.......1383..........7722...........42712
..13....169.....1383......13306........127951.........1204078
..24....576.....7722.....127951.......2109386........33878337
..44...1936....42712....1204078......33878337.......924245906
..81...6561...237116...11433452.....550371695.....25507294349
.149..22201..1315783..108485757....8927734479....703601341153
.274..75076..7300042.1028265705..144690439154..19385833712450
.504.254016.40505756.9752393774.2346488899945.534376376148754

Examples

			Some solutions for 5X3
..1..1..0....0..0..0....1..0..1....1..1..0....0..0..0....0..1..0....0..0..0
..1..0..1....0..1..1....0..1..1....1..0..0....0..1..0....1..0..1....0..0..1
..0..1..1....0..1..0....0..1..0....0..1..0....0..1..0....0..0..1....0..0..1
..0..0..0....0..0..1....1..0..1....0..0..0....0..0..0....1..0..0....1..1..0
..0..1..1....1..0..1....0..1..0....1..0..1....0..1..1....0..1..1....1..1..0
		

Crossrefs

Column 1 is A000073(n+3)
Column 2 is A085697(n+1)

A181224 T(n,k)=Number of nXk binary matrices with no three 1's adjacent in a line horizontally, vertically, diagonally or antidiagonally.

Original entry on oeis.org

2, 4, 4, 7, 16, 7, 13, 49, 49, 13, 24, 169, 230, 169, 24, 44, 576, 1209, 1209, 576, 44, 81, 1936, 6475, 10732, 6475, 1936, 81, 149, 6561, 34020, 97764, 97764, 34020, 6561, 149, 274, 22201, 179097, 845531, 1495392, 845531, 179097, 22201, 274, 504, 75076
Offset: 1

Views

Author

R. H. Hardin Oct 10 2010

Keywords

Comments

Table starts
...2......4........7.........13............24..............44................81
...4.....16.......49........169...........576............1936..............6561
...7.....49......230.......1209..........6475...........34020............179097
..13....169.....1209......10732.........97764..........845531...........7426986
..24....576.....6475......97764.......1495392........21513936.........316896477
..44...1936....34020.....845531......21513936.......507962194.......12297765846
..81...6561...179097....7426986.....316896477.....12297765846......493466099722
.149..22201...944514...65480503....4672517426....298705742479....19886730240632
.274..75076..4978956..574725752...68571093673...7214603356059...794878208506289
.504.254016.26241679.5050028956.1008146803248.174532135006271.31852650059853831

Examples

			Some avoided solutions for 4X4
..0..1..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..1....1..0..1..0....0..0..0..1....1..1..0..0....0..1..0..0
..0..0..0..0....0..1..0..0....1..1..1..0....0..1..0..0....0..0..0..0
..0..0..0..0....0..0..1..0....0..0..0..0....0..1..0..0....0..1..1..1
		

Crossrefs

Column 1 is A000073
Column 2 is A085697

A206994 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 horizontally and 1 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 7, 16, 7, 13, 49, 49, 13, 24, 169, 174, 169, 24, 44, 576, 840, 840, 576, 44, 81, 1936, 3858, 6510, 3858, 1936, 81, 149, 6561, 17460, 46878, 46878, 17460, 6561, 149, 274, 22201, 80070, 329952, 516724, 329952, 80070, 22201, 274, 504, 75076, 365784
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Table starts
...2.....4......7.......13........24..........44...........81............149
...4....16.....49......169.......576........1936.........6561..........22201
...7....49....174......840......3858.......17460........80070.........365784
..13...169....840.....6510.....46878......329952......2371090.......16939450
..24...576...3858....46878....516724.....5517786.....60684900......661767626
..44..1936..17460...329952...5517786....88819714...1482397764....24487141408
..81..6561..80070..2371090..60684900..1482397764..37849652838...954576893140
.149.22201.365784.16939450.661767626.24487141408.954576893140.36679559167444

Examples

			Some solutions for n=4 k=3
..1..1..1....1..0..1....1..0..1....1..0..0....1..0..0....1..1..0....1..1..0
..0..0..1....1..0..1....1..0..0....0..0..1....1..0..1....1..0..1....1..1..1
..0..1..0....0..1..0....0..1..1....0..1..0....0..0..1....0..1..1....0..0..1
..1..0..1....0..1..0....0..0..1....0..0..1....1..0..0....1..1..0....1..1..0
		

Crossrefs

Column 1 is A000073(n+3)
Column 2 is A085697(n+1)
Showing 1-10 of 16 results. Next