A107245 Sum of squares of heptanacci numbers (Fibonacci 7-step numbers).
0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, 339616, 1347632, 5347632, 21219888, 84199984, 334092848, 1325649969, 5260075594, 20871578510, 82816815054, 328610657230, 1303901211854, 5173777051854, 20529140314318
Offset: 0
Examples
a(0) = 0 = 0^2 a(1) = 0 = 0^2 + 0^2 a(2) = 0 = 0^2 + 0^2 + 0^2 a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2 a(4) = 0 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 a(5) = 0 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 a(6) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 a(7) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 a(8) = 6 = 0^2 + 0^2 + 0^2+ 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 a(9) = 22 = 0^2 + 0^2 +0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2 = 2*11 a(10) = 86 = 8^2 + 22 a(11) = 342 = 16^2 + 86
Links
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Index entries for linear recurrences with constant coefficients, signature (3, 2, 4, 7, 15, 30, 60, -131, -9, -8, 28, -11, -25, -32, 68, 5, 5, -10, 0, 5, 9, -14, 0, -1, 1, 0, 0, -1, 1).
Programs
-
Mathematica
LinearRecurrence[{3, 2, 4, 7, 15, 30, 60, -131, -9, -8, 28, -11, -25, -32, 68, 5, 5, -10, 0, 5, 9, -14, 0, -1, 1, 0, 0, -1, 1},{0, 0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, 339616, 1347632, 5347632, 21219888, 84199984, 334092848, 1325649969, 5260075594, 20871578510, 82816815054, 328610657230, 1303901211854, 5173777051854},30] (* Ray Chandler, Aug 02 2015 *) Accumulate[LinearRecurrence[{1,1,1,1,1,1,1},{0,0,0,0,0,0,1},30]^2] (* Ray Chandler, Aug 02 2015 *)
Formula
a(n) = F_7(0)^2 + F_7(1)^2 + ... F_7(n)^2, note that F_7(n) = A066178(n) with corrected offset (from leading zeros). a(0) = 0, a(n+1) = a(n) + F_7(n)^2.
Extensions
a(14) inserted by R. J. Mathar, Aug 11 2009
Comments