A107285 a(n) = 5*401*(10^n + 1).
4010, 22055, 202505, 2007005, 20052005, 200502005, 2005002005, 20050002005, 200500002005, 2005000002005, 20050000002005, 200500000002005, 2005000000002005, 20050000000002005, 200500000000002005, 2005000000000002005, 20050000000000002005, 200500000000000002005
Offset: 0
Examples
a(4) = 5*401*10001 = 20052005 = A106605(38).
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Programs
-
Mathematica
2005(10^Range[0,20]+1) (* or *) LinearRecurrence[{11,-10},{4010,22055},20] (* Harvey P. Dale, Sep 06 2016 *)
-
PARI
my(x='x+O('x^18)); Vec(2005*(2-11*x)/((10*x-1)*(x-1))) \\ Elmo R. Oliveira, Jun 16 2025
Formula
a(n) = 2005*A062397(n).
From Elmo R. Oliveira, Jun 16 2025: (Start)
G.f.: 2005*(2-11*x)/((1-x)*(1-10*x)).
E.g.f.: 2005*exp(x)*(1 + exp(9*x)).
a(n) = 10*a(n-1) - 18045.
a(n) = 11*a(n-1) - 10*a(n-2). (End)
Extensions
More terms from Elmo R. Oliveira, Jun 16 2025