cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107300 a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) with a(0)=3, a(1)=2, a(3)=8.

Original entry on oeis.org

3, 2, 8, 14, 40, 92, 236, 576, 1440, 3560, 8848, 21936, 54448, 135072, 335168, 831584, 2063360, 5119552, 12702656, 31517696, 78201600, 194033280, 481434368, 1194532096, 2963866368, 7353928192
Offset: 0

Views

Author

Roger L. Bagula, May 20 2005

Keywords

Crossrefs

Cf. A077937.

Programs

  • Magma
    I:=[3,2,8]; [n le 3 select I[n] else 2*(Self(n-1) +Self(n-2) -Self(n-3)): n in [1..46]]; // G. C. Greubel, May 02 2022
    
  • Mathematica
    LinearRecurrence[{2,2,-2}, {3,2,8}, 46]
  • SageMath
    def A107300_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (3-4*x-2*x^2)/(1-2*x-2*x^2+2*x^3) ).list()
    A107300_list(45) # G. C. Greubel, May 02 2022

Formula

G.f.: (3-4*x-2*x^2)/(1-2*x-2*x^2+2*x^3). [Sep 28 2009]
a(n) = 3*A077937(n) - 4*A077937(n-1) - 2*A077937(n-2). [Sep 28 2009]
a(n) = 2*(b1^n + b2^n + b3^n)/(b1 + b2 + b3), where b1, b2, and b3 and the roots of x^3 = 2*x^2 + 2*x - 2.

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009