cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107329 Triangle read by rows: T(n,k) gives number of partitions of k, (k=1..n) into the prime factors of n, for n>=1.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Wouter Meeussen, May 22 2005

Keywords

Comments

T(n,n) equals A066882(n).

Examples

			T(30,12)=5 counting [2,2,2,2,2,2], [2,2,2,3,3], [3,3,3,3], [2,2,3,5] and [2,5,5].
Triangle begins:
  {0},
  {0, 1},
  {0, 0, 1},
  {0, 1, 0, 1},
  {0, 0, 0, 0, 1},
  {0, 1, 1, 1, 1, 2},
  {0, 0, 0, 0, 0, 0, 1},
  {0, 1, 0, 1, 0, 1, 0, 1},
  {0, 0, 1, 0, 0, 1, 0, 0, 1},
  ...
		

Crossrefs

Cf. A066882.
Row sums +1 give A092976.

Programs

  • Maple
    with(numtheory):
    T:= proc(n) local b, l; l:= sort([factorset(n)[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          seq(b(k, nops(l)), k=1..n)
        end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Oct 28 2021
  • Mathematica
    Table[Rest@CoefficientList[Series[1/Times @@ ((1-x^#)& /@ (First /@ FactorInteger[n])), {x, 0, n}], x], {n, 2, 24}]

Formula

T(n,k) is coefficient of x^k in 1/Product(1-x^p_i) with p_i the prime factors of n.

Extensions

T(1,1) = 0 prepended by Michel Marcus, Oct 28 2021