A107329 Triangle read by rows: T(n,k) gives number of partitions of k, (k=1..n) into the prime factors of n, for n>=1.
0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1
Examples
T(30,12)=5 counting [2,2,2,2,2,2], [2,2,2,3,3], [3,3,3,3], [2,2,3,5] and [2,5,5]. Triangle begins: {0}, {0, 1}, {0, 0, 1}, {0, 1, 0, 1}, {0, 0, 0, 0, 1}, {0, 1, 1, 1, 1, 2}, {0, 0, 0, 0, 0, 0, 1}, {0, 1, 0, 1, 0, 1, 0, 1}, {0, 0, 1, 0, 0, 1, 0, 0, 1}, ...
Links
- Alois P. Heinz, rows n = 1..200, flattened
Programs
-
Maple
with(numtheory): T:= proc(n) local b, l; l:= sort([factorset(n)[]]): b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i)))) end; forget(b): seq(b(k, nops(l)), k=1..n) end: seq(T(n), n=1..20); # Alois P. Heinz, Oct 28 2021
-
Mathematica
Table[Rest@CoefficientList[Series[1/Times @@ ((1-x^#)& /@ (First /@ FactorInteger[n])), {x, 0, n}], x], {n, 2, 24}]
Formula
T(n,k) is coefficient of x^k in 1/Product(1-x^p_i) with p_i the prime factors of n.
Extensions
T(1,1) = 0 prepended by Michel Marcus, Oct 28 2021
Comments