A107358 Dying rabbits: a(n) = Fibonacci(n) for n <= 12; for n >= 13, a(n) = a(n-1) + a(n-2) - a(n-13).
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 376, 608, 982, 1587, 2564, 4143, 6694, 10816, 17476, 28237, 45624, 73717, 119108, 192449, 310949, 502416, 811778, 1311630, 2119265, 3424201, 5532650, 8939375, 14443788, 23337539, 37707610, 60926041, 98441202, 159056294
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.
- V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,0,0,0,0,0,0,0,-1).
Programs
-
Maple
with(combinat); f:=proc(n) option remember; if n <= 12 then RETURN(fibonacci(n)); fi; f(n-1)+f(n-2)-f(n-13); end;
-
Mathematica
LinearRecurrence[{1,1,0,0,0,0,0,0,0,0,0,0,-1},Fibonacci[Range[0,12]],50] (* Harvey P. Dale, Feb 28 2013 *)
-
PARI
Vec(x/(x^13-x^2-x+1)+O(x^99)) \\ Charles R Greathouse IV, Jun 10 2011
Formula
G.f.: x/((x-1)*(1+x)*(x^11+x^9+x^7+x^5+x^3+x-1)). - R. J. Mathar, Jul 27 2009
Comments