cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332347 Array read by antidiagonals: T(m,n) is the number of maximal independent sets in the m X n king graph.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 3, 6, 6, 3, 4, 12, 8, 12, 4, 5, 20, 22, 22, 20, 5, 7, 36, 40, 79, 40, 36, 7, 9, 64, 82, 194, 194, 82, 64, 9, 12, 112, 176, 537, 544, 537, 176, 112, 12, 16, 200, 340, 1519, 1882, 1882, 1519, 340, 200, 16, 21, 352, 722, 4011, 6490, 8197, 6490, 4011, 722, 352, 21
Offset: 1

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Comments

Also the number of minimal vertex covers in the m X n king graph.

Examples

			Array begins:
=====================================================
m\n | 1   2   3    4     5      6       7       8
----+------------------------------------------------
  1 | 1   2   2    3     4      5       7       9 ...
  2 | 2   4   6   12    20     36      64     112 ...
  3 | 2   6   8   22    40     82     176     340 ...
  4 | 3  12  22   79   194    537    1519    4011 ...
  5 | 4  20  40  194   544   1882    6490   20534 ...
  6 | 5  36  82  537  1882   8197   36301  144409 ...
  7 | 7  64 176 1519  6490  36301  201611 1009321 ...
  8 | 9 112 340 4011 20534 144409 1009321 6214593 ...
  ...
		

Crossrefs

Rows 1..4 are A000931(n+6), A107383(n+2), A332348, A332349.
Main diagonal is A288956.
Cf. A197054 (grid graph), A218663 (dominating sets), A245013 (independent sets), A286849 (minimal dominating sets).

Formula

T(n,m) = T(m,n).

A320500 Symmetric array read by antidiagonals: T(m,n) = number of "minimal connected vertex covers" of an m X n grid, for m>=1, n>=1.

Original entry on oeis.org

1, 2, 2, 1, 4, 1, 1, 6, 6, 1, 1, 12, 11, 12, 1, 1, 20, 30, 30, 20, 1, 1, 36, 75, 110, 75, 36, 1, 1, 64, 173, 382, 382, 173, 64, 1, 1, 112, 434, 1270, 1804, 1270, 434, 112, 1, 1, 200, 1054, 4298, 7888, 7888, 4298, 1054, 200, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2018, based on email from Don Knuth, Oct 20 2018

Keywords

Comments

Take the m X n grid graph with m*n vertices, each connected to four neighbors [except only two at the corners, otherwise three on the edges]. We ask for a vertex cover that is connected. It should also be minimal: if we leave out any element and it is no longer a connected vertex cover.

Examples

			The array begins:
1,   2,    1,     1,      1,        1,         1,          1,           1, ...
2,   4,    6,    12,     20,       36,        64,        112,         200, ...
1,   6,   11,    30,     75,      173,       434,       1054,        2558, ...
1,  12,   30,   110,    382,     1270,      4298,      14560,       49204, ...
1,  20,   75,   382,   1804,     7888,     36627,     166217,      755680, ...
1,  36,  173,  1270,   7888,    46416,    287685,    1751154,    10656814, ...
1,  64,  434,  4298,  36627,   287685,   2393422,   19366411,   157557218, ...
1, 112, 1054, 14560, 166217,  1751154,  19366411,  208975042,  2255742067, ...
1, 200, 2558, 49204, 755680, 10656814, 157557218, 2255742067, 32411910059, ...
...
The T(3,3) = 11 minimal connected vertex covers of a 3 X 3 grid are:
X.X  .X.  X..  X.X  X..  X..  ..X  ...  ...  .X.  ...
...  ...  ..X  ...  ..X  .X.  .X.  .X.  .X.  ...  X.X
X.X  X.X  X..  .X.  X..  ...  ...  X..  ..X  .X.  ...
		

Crossrefs

Row 2 appears to be (essentially) A107383 (or twice A061279).
The main diagonal is A320501.
Rows 3,4,5 are A320482, A320483, A320484.
Showing 1-2 of 2 results.