cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A332348 Number of maximal independent sets in the 3 X n king graph.

Original entry on oeis.org

1, 2, 6, 8, 22, 40, 82, 176, 340, 722, 1450, 2966, 6096, 12362, 25384, 51728, 105698, 216074, 440962, 901396, 1840686, 3760232, 7681828, 15689962, 32053346, 65473214, 133745304, 273208346, 558081744, 1140024080, 2328745042, 4757002434, 9717279194, 19849727740
Offset: 0

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Crossrefs

Row n=3 of A332347.

Programs

  • PARI
    Vec((1 + x + 2*x^2 - 3*x^3 + 2*x^4 - 2*x^5)/(1 - x - 2*x^2 - x^3 + 2*x^4 - 2*x^5 + 2*x^6) + O(x^40))

Formula

a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) for n >= 6.
G.f.: (1 + x + 2*x^2 - 3*x^3 + 2*x^4 - 2*x^5)/(1 - x - 2*x^2 - x^3 + 2*x^4 - 2*x^5 + 2*x^6).

A332349 Number of maximal independent sets in the 4 X n king graph.

Original entry on oeis.org

1, 3, 12, 22, 79, 194, 537, 1519, 4011, 11258, 30506, 83661, 229754, 627171, 1721547, 4710045, 12901630, 35342272, 96764537, 265067580, 725878627, 1988023833, 5444771405, 14911382924, 40839083772, 111846316151, 306317816028, 838924085421, 2297583803229, 6292480053823
Offset: 0

Views

Author

Andrew Howroyd, Feb 10 2020

Keywords

Crossrefs

Row n=4 of A332347.

Programs

  • PARI
    Vec((1 + 2*x + 5*x^2 - 5*x^3 + 4*x^4 - 3*x^5 - 6*x^6)/((1 - x)*(1 - 4*x^2 - 7*x^3 - 3*x^4 - 9*x^5 - 6*x^6)) + O(x^40))

Formula

a(n) = a(n-1) + 4*a(n-2) + 3*a(n-3) - 4*a(n-4) + 6*a(n-5) - 3*a(n-6) - 6*a(n-7) for n >= 7.
G.f.: (1 + 2*x + 5*x^2 - 5*x^3 + 4*x^4 - 3*x^5 - 6*x^6)/((1 - x)*(1 - 4*x^2 - 7*x^3 - 3*x^4 - 9*x^5 - 6*x^6)).

A350818 Array read by antidiagonals: T(m,n) is the number of maximum independent sets in the m X n king graph.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 4, 4, 3, 1, 1, 1, 12, 1, 12, 1, 1, 1, 4, 8, 9, 9, 8, 4, 1, 1, 1, 32, 1, 79, 1, 32, 1, 1, 1, 5, 16, 16, 27, 27, 16, 16, 5, 1, 1, 1, 80, 1, 408, 1, 408, 1, 80, 1, 1, 1, 6, 32, 25, 81, 64, 64, 81, 25, 32, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

The maximum size of an independent set is the independence number which in the case of an m X n king graph is given by ceiling(m/2)*ceiling(n/2).

Examples

			Table begins:
=============================================
m\n | 0 1  2  3    4   5     6   7      8
----+----------------------------------------
  0 | 1 1  1  1    1   1     1   1      1 ...
  1 | 1 1  2  1    3   1     4   1      5 ...
  2 | 1 2  4  4   12   8    32  16     80 ...
  3 | 1 1  4  1    9   1    16   1     25 ...
  4 | 1 3 12  9   79  27   408  81   1847 ...
  5 | 1 1  8  1   27   1    64   1    125 ...
  6 | 1 4 32 16  408  64  3600 256  26040 ...
  7 | 1 1 16  1   81   1   256   1    625 ...
  8 | 1 5 80 25 1847 125 26040 625 281571 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).
T(2*m+1, 2*n+1) = 1.
T(2*m, 2*n+1) = (1+m)^(1+n).
T(2*m, 2*n) = A350819(m, n).

A288956 Number of maximal independent vertex sets (and minimal vertex covers) in the n X n king graph.

Original entry on oeis.org

1, 4, 8, 79, 544, 8197, 201611, 6214593, 391918650, 32239887128, 4599025630995, 1018245217588836, 346578151637999287, 193445218205732588935, 165199496607694525364163, 226636538088997406396236072, 488063150616514603623041818756, 1655950305544572458601638523072809
Offset: 1

Views

Author

Eric W. Weisstein, Jun 20 2017

Keywords

Crossrefs

Main diagonal of A332347.
Cf. A197048 (grid graph), A063443 (independent sets), A193580, A133791 (dominating sets).

Extensions

a(9)-a(18) from Andrew Howroyd, Jun 26 2017
Showing 1-4 of 4 results.