A332347 Array read by antidiagonals: T(m,n) is the number of maximal independent sets in the m X n king graph.
1, 2, 2, 2, 4, 2, 3, 6, 6, 3, 4, 12, 8, 12, 4, 5, 20, 22, 22, 20, 5, 7, 36, 40, 79, 40, 36, 7, 9, 64, 82, 194, 194, 82, 64, 9, 12, 112, 176, 537, 544, 537, 176, 112, 12, 16, 200, 340, 1519, 1882, 1882, 1519, 340, 200, 16, 21, 352, 722, 4011, 6490, 8197, 6490, 4011, 722, 352, 21
Offset: 1
Examples
Array begins: ===================================================== m\n | 1 2 3 4 5 6 7 8 ----+------------------------------------------------ 1 | 1 2 2 3 4 5 7 9 ... 2 | 2 4 6 12 20 36 64 112 ... 3 | 2 6 8 22 40 82 176 340 ... 4 | 3 12 22 79 194 537 1519 4011 ... 5 | 4 20 40 194 544 1882 6490 20534 ... 6 | 5 36 82 537 1882 8197 36301 144409 ... 7 | 7 64 176 1519 6490 36301 201611 1009321 ... 8 | 9 112 340 4011 20534 144409 1009321 6214593 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..496
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover
Crossrefs
Formula
T(n,m) = T(m,n).
Comments