A107464
Number of fuzzy subgroups of rank 3 cyclic group of order (p^n)*q*r where p, q and r are three distinct prime.
Original entry on oeis.org
11, 51, 175, 527, 1471, 3903, 9983, 24831, 60415, 144383, 339967, 790527, 1818623, 4145151, 9371647, 21037055, 46923775, 104071167, 229638143, 504365055, 1103101951, 2403336191, 5217714175, 11291066367, 24360517631, 52412022783, 112474456063, 240786604031
Offset: 0
Venkat Murali (v.murali(AT)ru.ac.za), May 27 2005
a(5) = (2^6)*(5^2+6*5+6)-1= 3903. This is the number of chains in the lattice of subgroups of the direct sum Z_(p^6)+ Z_q + Z_r for 3 distinct prime p,q and r where Z_i is the group of integers modulo i.
- V. Murali, Number of chains in the power set of a set with (n+2) elements, specification n^1 1^2, preprint, 2005.
- V. Murali and B. B. Makamba, Fuzzy subgroups of finite Abelian groups III, Rhodes University Preprint, 2005.
A107953
Number of chains in the power set lattice of an (n+3)-element set X_(n+3) of specification n^1 2^1 1, that is, n identical objects of one kind, 2 identical objects of another kind and one other kind. It is the same as the number of fuzzy subsets X_(n+3).
Original entry on oeis.org
31, 175, 703, 2415, 7551, 22143, 61951, 167167, 438271, 1122303, 2818047, 6959103, 16941055, 40730623, 96862207, 228130815, 532676607, 1234173951, 2839543807, 6491734015, 14755561471, 33361494015, 75061264383, 168124481535, 375004332031, 833223655423
Offset: 0
Venkat Murali (v.murali(AT)ru.ac.za), May 28 2005
a(3) = 2^4*((9/2)*16 + 21*3 + 16) - 1 = 2415 which is the number of distinct chains in the power set lattice (or fuzzy subsets) of a set X_(n+3) with 3 kinds of objects, n of one kind, 2 of another and one of yet another.
- V. Murali, On the number of fuzzy subsets of an (n+3)-element set of specification n^1 2^1 1, Rhodes University Preprint, 2005.
-
Table[2^(n+1) (n^2/2 (n+13)+21n+16)-1,{n,0,30}] (* or *) LinearRecurrence[ {9,-32,56,-48,16},{31,175,703,2415,7551},30] (* Harvey P. Dale, Feb 10 2015 *)
-
Vec((48*x^3-120*x^2+104*x-31)/((x-1)*(2*x-1)^4) + O(x^100)) \\ Colin Barker, Jan 15 2015
a(5) corrected Jun 01 2005
A107954
Number of chains in the power set lattice, or the number of fuzzy subsets of an (n+4)-element set X_(n+4) with specification n elements of one kind, 3 elements of another and 1 of yet another kind.
Original entry on oeis.org
79, 527, 2415, 9263, 31871, 101759, 307455, 890111, 2490367, 6774783, 18001919, 46886911, 120029183, 302678015, 753205247, 1852375039, 4507828223, 10866393087, 25970081791, 61583917055, 144997089279, 339159810047
Offset: 0
Venkat Murali (v.murali(AT)ru.ac.za), May 30 2005
a(2) = 8 * ( (16 + 184)/6 + (316 + 370)/3 + 40 ) - 1 = 2415. This is the number of fuzzy subsets of a set of (2+4) elements of which 2 are of one kind, 3 are of another kind and 1 of a kind distinct from the other two.
- V. Murali, On the enumeration of fuzzy subsets of X_(n+4) of specification n^1 3^1 1, Rhodes University JRC-Abstract-Report, In Preparation, 12 pages 2005.
-
a[n_] := 2^n(n^4 + 23n^3 + 158n^2 + 370n + 240)/3 - 1; Table[ a[n], {n, 0, 21}] (* Robert G. Wilson v, May 31 2005 *)
LinearRecurrence[{11,-50,120,-160,112,-32},{79,527,2415,9263,31871,101759},40] (* Harvey P. Dale, Aug 15 2025 *)
A107955
Number of chains in the power set lattice or the number of fuzzy subsets of an (n+5)-element set X_(n+5) with specification n elements of one kind, 4 elements of another and 1 of yet another kind.
Original entry on oeis.org
191, 1471, 7551, 31871, 119231, 410303, 1327103, 4090623, 12130303, 34842623, 97435647, 266313727, 713637887, 1879523327, 4875091967, 12474187775, 31531728895, 78832992255, 195135799295, 478649778175, 1164351373311
Offset: 0
Venkat Murali (v.murali(AT)ru.ac.za), Jun 01 2005
a(3) = (2^(3+1))*(1/24)*(3^5 + 36 * 3^4 + 431 * 3^3 + 2088 * 3^2 + 3972 * 3 + 2304) - 1 = 31871. This is the number of chains in the power set lattice (which is also the number of fuzzy subsets) of X_(n+5).
- Venkat Murali, On the enumeration of fuzzy subsets of an (n+5)-element set X_(n+5) of specification n^1 4^1 1, Rhodes University JRC-Abstract-Report, In Preparation, 15 pages 2005.
Showing 1-4 of 4 results.
Comments