cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107418 a(n) = binomial(n+3,3)*binomial(n+6,6).

Original entry on oeis.org

1, 28, 280, 1680, 7350, 25872, 77616, 205920, 495495, 1101100, 2290288, 4504864, 8446620, 15193920, 26356800, 44279424, 72299997, 115079580, 179012680, 272734000, 407737330, 599124240, 866502000, 1235052000, 1736791875, 2412056556, 3311225568, 4496726080, 6045343480
Offset: 0

Views

Author

Zerinvary Lajos, May 26 2005

Keywords

Examples

			If n=0 then C(0+3,3)*C(0+6,6) = C(3,3)*C(6,6) = 1*1 = 1.
If n=8 then C(8+3,3)*C(8+6,6) = C(11,3)*C(14,6) = 165*3003 = 495495.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A107418:= func< n | Binomial(n+3,n)*Binomial(n+6,n) >;
    [A107418(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Maple
    seq(binomial(n+3,3)*binomial(n+6,6),n=0..100); # Robert Israel, Feb 24 2017
  • Mathematica
    a[n_] := Binomial[n + 3, 3] * Binomial[n + 6, 6]; Array[a, 30, 0] (* Amiram Eldar, Sep 06 2022 *)
  • PARI
    for(n=0,29,print1(binomial(n+3,3)*binomial(n+6,6),","))
    
  • SageMath
    def A107418(n): return binomial(n+3,n)*binomial(n+6,n)
    print([A107418(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

G.f.: (1 + 18*x + 45*x^2 + 20*x^3)/(1-x)^10. - Robert Israel, Feb 24 2017
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 63*Pi^2 - 124149/200.
Sum_{n>=0} (-1)^n/a(n) = 3*Pi^2/2 + 1344*log(2)/5 - 40031/200. (End)

Extensions

Corrected and extended by Rick L. Shepherd, May 27 2005