A107443 Expansion of g.f.: (1+3*x^2)/((1-x)*(1+x+2*x^2)*(1-x+2*x^2)).
1, 1, 1, 1, -3, -3, 9, 9, -11, -11, 1, 1, 45, 45, -135, -135, 229, 229, -143, -143, -483, -483, 2025, 2025, -4139, -4139, 4321, 4321, 3597, 3597, -28071, -28071, 69829, 69829, -97199, -97199, 12285, 12285, 351945, 351945, -1104971, -1104971, 1907137, 1907137, -1301523, -1301523, -3723975, -3723975
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,-3,3,-4,4).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)) )); // G. C. Greubel, Mar 24 2024 -
Maple
with(gfun): seriestolist(series((3*x^2+1)/((1-x)*(2*x^2+x+1)*(2*x^2-x+1)), x=0,50));
-
Mathematica
CoefficientList[Series[(1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)), {x,0,50}], x] (* G. C. Greubel, Mar 24 2024 *)
-
SageMath
def A107443_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)) ).list() A107443_list(50) # G. C. Greubel, Mar 24 2024
Formula
a(2n) = a(2n+1) = A174565(n).