cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107443 Expansion of g.f.: (1+3*x^2)/((1-x)*(1+x+2*x^2)*(1-x+2*x^2)).

Original entry on oeis.org

1, 1, 1, 1, -3, -3, 9, 9, -11, -11, 1, 1, 45, 45, -135, -135, 229, 229, -143, -143, -483, -483, 2025, 2025, -4139, -4139, 4321, 4321, 3597, 3597, -28071, -28071, 69829, 69829, -97199, -97199, 12285, 12285, 351945, 351945, -1104971, -1104971, 1907137, 1907137, -1301523, -1301523, -3723975, -3723975
Offset: 0

Views

Author

Creighton Dement, May 26 2005

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)) )); // G. C. Greubel, Mar 24 2024
    
  • Maple
    with(gfun): seriestolist(series((3*x^2+1)/((1-x)*(2*x^2+x+1)*(2*x^2-x+1)), x=0,50));
  • Mathematica
    CoefficientList[Series[(1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)), {x,0,50}], x] (* G. C. Greubel, Mar 24 2024 *)
  • SageMath
    def A107443_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+3*x^2)/((1-x)*(1+3*x^2+4*x^4)) ).list()
    A107443_list(50) # G. C. Greubel, Mar 24 2024

Formula

a(2n) = a(2n+1) = A174565(n).
a(n) = (1 - 2*(-1)^n*A001607(n) + A001607(n+1))/2. - G. C. Greubel, Mar 24 2024