A107449 Irregular triangle T(n, k) = 10 - ( (b(n) + k^2 + k + 1) mod 10 ), where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.
5, 3, 9, 3, 7, 3, 7, 9, 9, 7, 3, 7, 9, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3
Offset: 1
Examples
The irregular triangle begins as: 5; 3, 9, 3; 7, 3, 7, 9, 9, 7, 3, 7, 9; 1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3;
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2206
Programs
-
Magma
b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >; A107448:= func< n, k | 10 - ((b(n) +k^2 +k +1) mod 10) >; [5,3,9,3] cat [A107448(n, k): k in [1..b(n)-1], n in [3..8]]; // G. C. Greubel, Mar 24 2024
-
Mathematica
b[n_]:= 2^(n-3)*(9-(-1)^n) -Boole[n==1]/2; T[n_, k_]:= 10 -Mod[k^2+k+1+b[n], 10]; Table[T[n, k], {n,8}, {k,b[n]-1}]//Flatten (* G. C. Greubel, Mar 24 2024 *)
-
SageMath
def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2 def A107449(n, k): return 10 - ((b(n) + k^2+k+1)%10); flatten([[A107449(n, k) for k in range(1, b(n))] for n in range(1, 8)]) # G. C. Greubel, Mar 24 2024
Formula
T(n, k) = 10 - (b(n) + k^2 + k + 1) mod 10, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - G. C. Greubel, Mar 24 2024
Extensions
Edited by G. C. Greubel, Mar 24 2024