cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107505 Theta series of quadratic form with Gram matrix [ 2, 1, 0, 1; 1, 4, 1, 0; 0, 1, 4, -2; 1, 0, -2, 8].

Original entry on oeis.org

1, 2, 6, 8, 14, 12, 24, 16, 30, 26, 36, 24, 56, 2, 48, 48, 62, 36, 78, 40, 84, 64, 72, 48, 120, 62, 6, 80, 112, 60, 144, 64, 126, 96, 108, 96, 182, 76, 120, 8, 180, 84, 192, 88, 168, 156, 144, 96, 248, 114, 186, 144, 14, 108, 240, 144, 240, 160, 180, 120
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2005

Keywords

Comments

Coefficients of a theta series associated with a certain "Haupt-form" of rank 4 and level 13.
The Gram matrix is denoted by A in Parry 1979 on page 165.

Examples

			G.f. = 1 + 2*q + 6*q^2 + 8*q^3 + 14*q^4 + 12*q^5 + 24*q^6 + 16*q^7 + 30*q^8 + ...
		

Crossrefs

Cf. A284587.

Programs

  • Magma
    Basis( ModularForms( Gamma0(13), 2), 100) [1]; /* Michael Somos, Aug 15 2016 */
    
  • Magma
    [Coefficient(Basis(ModularForms(Gamma0(13), 2))[1], n) : n in [0..100] ]; // Vincenzo Librandi, Jun 27 2017
  • Mathematica
    a[n_] := If[n == 0, 1, 2 DivisorSigma[1, n/13^IntegerExponent[n, 13]]];
    a /@ Range[0, 59] (* Jean-François Alcover, Oct 23 2019, after Michael Somos *)
    a[n_] := If[n == 0, 1, 2 DivisorSum[n, Boole[!Divisible[#, 13]] # &]];
    a /@ Range[0, 59] (* Jean-François Alcover, Oct 23 2019 *)
  • PARI
    {a(n) = if( n<1, n==0, 1, 2 * sigma(n / 13^valuation(n, 13)))}; /* Michael Somos, Mar 23 2012 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [2, 1, 0, 1; 1, 4, 1, 0; 0, 1, 4, -2; 1, 0, -2, 8]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n, 1)), n))}; /* Michael Somos, Mar 23 2012 */
    
  • Sage
    ModularForms( Gamma0(13), 2, prec=100).0; # Michael Somos, Jun 27 2013
    

Formula

a(n) = 2 * b(n) where b() is multiplicative and b(13^e) = 1, b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise. - Michael Somos, Mar 23 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (13 t)) = 13 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 23 2012
a(n) = 2 * A284587(n) if n>1. - Michael Somos, Oct 23 2019