cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107597 Antidiagonal sums of triangle A107105: a(n) = Sum_{k=0..n} A107105(n-k,k), where A107105(n,k) = C(n,k)*(C(n,k) + 1)/2.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 38, 87, 205, 493, 1203, 2969, 7389, 18504, 46561, 117596, 297883, 756388, 1924484, 4904830, 12519121, 31995286, 81864992, 209681349, 537562018, 1379332297, 3542013533, 9102191107, 23406301490, 60226845008, 155059899921
Offset: 0

Views

Author

Paul D. Hanna, May 22 2005

Keywords

Comments

Limit a(n+1)/a(n) = (sqrt(5)+3)/2.

Crossrefs

Programs

  • PARI
    a(n)=(sum(k=0,n,binomial(n-k,k)^2)+fibonacci(n+1))/2
    
  • PARI
    {a(n)= if(n<0, 0, polcoeff( (1/(1-x-x^2) +1/sqrt((1+x+x^2)* (1-3*x+x^2)+ x*O(x^n)))/2, n))} /* Michael Somos, Jul 27 2007 */

Formula

a(n) = (A051286(n) + A000045(n+1))/2, where A000045(n+1) = Fibonacci(n+1) and A051286(n) = Whitney number of level n.
G.f.: ( 1/(1-x-x^2) + 1/sqrt( (1+x+x^2)*(1-3*x+x^2) ) )/2. - Michael Somos, Jul 27 2007
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} x^k * C(n,k)*(C(n,k) + 1)/2. - Paul D. Hanna, Aug 13 2014