A107600 Column 5 of array illustrated in A089574 and related to A034261.
1, 18, 101, 357, 978, 2274, 4711, 8954, 15915, 26806, 43197, 67079, 100932, 147798, 211359, 296020, 406997, 550410, 733381, 964137, 1252118, 1608090, 2044263, 2574414, 3214015, 3980366, 4892733, 5972491, 7243272, 8731118, 10464639
Offset: 9
Examples
A107600(n) can be constructed from five other sequences as follows: 1...7...25...65...140.......A001296 ....1...11...56...196.......A034264 ....6...42..162...462.......6.*.A005585. ....3...18...60...150.......A006011 ....1....5...14....30.......A000330 therefore 1..18..101..357...978.......A107600
Links
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Programs
-
Maple
a:= n-> `if` (n<9, 0, (92292 +(-6580 +(-5745 +(1535 +(-147+5*n) *n) *n) *n) *n) *n /720 -218): seq(a(n), n=9..45); # Alois P. Heinz, Nov 06 2009
-
Mathematica
Select[CoefficientList[Series[(x^5-5x^4+7x^3+4x^2-11x-1)x^9/(x-1)^7, {x,0,50}],x],#>0&] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1,18,101,357,978,2274,4711},42] (* Harvey P. Dale, May 01 2011 *)
Formula
G.f.: (x^5 -5*x^4 +7*x^3 +4*x^2 -11*x -1) *x^9 /(x-1)^7. - Alois P. Heinz, Nov 06 2009
Extensions
More terms from Alois P. Heinz, Nov 06 2009
Comments