cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A004010 Theta series of 12-dimensional Coxeter-Todd lattice K_12.

Original entry on oeis.org

1, 0, 756, 4032, 20412, 60480, 139860, 326592, 652428, 1020096, 2000376, 3132864, 4445532, 7185024, 10747296, 13148352, 21003948, 27506304, 33724404, 48009024, 64049832, 70709184, 102958128, 124782336, 142254252, 189423360, 237588120, 248250240, 344391264
Offset: 0

Views

Author

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 756*x^2 + 4032*x^3 + 20412*x^4 + 604890*x^5 + 139860*x^6 + ...
G.f. = 1 + 756*q^4 + 4032*q^6 + 20412*q^8 + 60480*q^10 + 139860*q^12 + 326592*q^14 + 652428*q^16 + 1020096*q^18 + 2000376*q^20 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 129.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 6), 29); A[1] + 756*A[3]; /* Michael Somos, Dec 20 2015 */
    
  • Maple
    # Jacobi theta constants th2, th3: maxd := 201: temp0 := trunc(evalf(sqrt(maxd)))+2: a := 0: for i from -temp0 to temp0 do a := a+q^( (i+1/2)^2): od: th2 := series(a,q,maxd); a := 0: for i from -temp0 to temp0 do a := a+q^(i^2): od: th3 := series(a,q,maxd);
    # get phi0 and phi1: phi0 := series( subs(q=q^2, th2)*subs(q=q^6, th2)+subs(q=q^2, th3)*subs(q=q^6, th3), q, maxd); phi1 := series( subs(q=q^2, th2)*subs(q=q^6, th3)+subs(q=q^2, th3)*subs(q=q^6, th2), q, maxd);
    K_12 := series( subs(q=q^2,phi0)^6+45*subs(q=q^2,phi0)^2*subs(q=q^2,phi1)^4+18*subs(q=q^2,phi1)^6,q,maxd);
  • Mathematica
    maxd = 51; temp0 = Floor[ Sqrt[maxd] ]+2; a = 0; Do[ a=a+q^(i+1/2)^2, {i, -temp0, temp0}]; th2[q_] = Normal[ Series[a, {q, 0, maxd}]]; a = 0; Do[ a=a+q^i^2, {i, -temp0, temp0}]; th3[q_] = Normal[ Series[a, {q, 0, maxd}]]; phi0[q_] = Normal[ Series[ th2[q^2]*th2[q^6] + th3[q^2]*th3[q^6], {q, 0, maxd}]]; phi1[q_] = Normal[ Series[ th2[q^2]*th3[q^6] + th3[q^2]*th2[q^6], {q, 0, maxd}]]; K12 = Series[ phi0[q^2]^6 + 45*phi0[q^2]^2*phi1[q^2]^4 + 18*phi1[q^2]^6, {q, 0, maxd}]; CoefficientList[ K12, q^2 ] (* Jean-François Alcover, Nov 28 2011, translated from Maple *)
    a[ n_] := With[ {U1 = QPochhammer[ q]^3, U3 = QPochhammer[ q^3]^3, U9 = QPochhammer[ q^9]^3}, With[ {z = (1 + 9 q U9/U1)^3}, SeriesCoefficient[ (U1^3/U3)^2 (3 z^2 - 4 z + 4) / 3, {q, 0, n}]]]; (* Michael Somos, Dec 25 2015 *)
  • PARI
    {a(n) = my(A, U1, U3, U9, z); if( n<0, 0, A = x * O(x^n); U1 = eta(x + A)^3; U3 = eta(x^3 + A)^3; U9 = eta(x^9 + A)^3; z = (1 + 9 * x * U9/U1)^3; polcoeff( (U1^3/U3)^2 * (3*z^2 - 4*z +4) / 3, n))}; /* Michael Somos, Dec 25 2015 */

Formula

G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 27 (t/i)^6 f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 20 2015
G.f.: (3*a(x)^6 - 4*a(x)^3*b(x)^3 + 4*b(x)^6) / 3 where a(), b() are cubic AGM theta functions. - Michael Somos, Dec 25 2015

A320686 Inverse Euler transform of A004010.

Original entry on oeis.org

0, 756, 4032, -265734, -2987712, 120604680, 2176735680, -58263976134, -1563340453248, 27722120100948, 1105815958027200, -12029301541618956, -769283790627284352, 3952625120472002580, 525306588856752370752, 41570815360527775098, -351118365555207656907648
Offset: 1

Views

Author

Seiichi Manyama, Oct 19 2018

Keywords

Comments

a(n) is a multiple of 6.

Examples

			1 + 756*q^2 + 4032*q^3 + 20412*q^4 + ... = (1-q^2)^(-756) * (1-q^3)^(-4032) * (1-q^4)^265734 * ... .
		

Crossrefs

Showing 1-2 of 2 results.