cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107666 Primes having only {4, 6, 9} as digits.

Original entry on oeis.org

449, 499, 4649, 4969, 4999, 6449, 6469, 6949, 9649, 9949, 44449, 44699, 46499, 46649, 49499, 49669, 49999, 64499, 64969, 66449, 66499, 66949, 69499, 94649, 94949, 94999, 96469, 99469, 444449, 444469, 444649, 446969, 449699, 464699, 464999, 466649, 469649, 469969
Offset: 1

Views

Author

Rick L. Shepherd, May 19 2005

Keywords

Comments

Intersection of A000040 and A107665. - K. D. Bajpai, Sep 08 2014

Examples

			From _K. D. Bajpai_, Sep 08 2014: (Start)
4649 is a term because it is a prime having only semiprime digits 4, 6 and 9.
6469 is a term because it is a prime having only semiprime digits 4, 6 and 9.
449 is the smallest prime comprising only semiprime digits 4, 6 or 9.
(End)
		

Crossrefs

Cf. A107665 (numbers with semiprime digits), A001358 (semiprimes), A051416 (primes whose digits are all composite), A020466 (primes with digits 4 and 9 only), A093402 (primes of form 44...9), A093945 (primes of form 499...).

Programs

  • Maple
    N:= 4:  Dgts:= {4, 6, 9}:  A:= NULL:
    for d from 1 to N do
    K:= combinat[cartprod]([Dgts minus {0}, Dgts $(d-1)]);
    while not K[finished] do L:= K[nextvalue]();  x:= add(L[i]*10^(d-i), i=1..d);
    if isprime(x) then A:= A, x fi od od: A;  # K. D. Bajpai, Sep 08 2014
  • Mathematica
    Select[Prime[Range[50000]], Intersection[IntegerDigits[#], {0, 1, 2, 3, 5, 7, 8}] == {} &] (* K. D. Bajpai, Sep 08 2014 *)

Extensions

a(35)-a(38) from K. D. Bajpai, Sep 08 2014