A107670 Matrix square of triangle A107667.
1, 12, 4, 216, 45, 9, 5248, 816, 112, 16, 160675, 20225, 2200, 225, 25, 5931540, 632700, 58176, 4860, 396, 36, 256182290, 23836540, 1920163, 138817, 9408, 637, 49, 12665445248, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 12, 4; 216, 45, 9; 5248, 816, 112, 16; 160675, 20225, 2200, 225, 25; 5931540, 632700, 58176, 4860, 396, 36; 256182290, 23836540, 1920163, 138817, 9408, 637, 49; ...
Programs
-
PARI
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^2*P)[n+1,k+1])}
Formula
Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)! for n >= k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D^2*P.
Comments