cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107671 Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^3), where SHIFT_LEFT shifts each row 1 place to the left and D is the diagonal matrix {1, 2, 3, ...}.

Original entry on oeis.org

1, 8, 2, 513, 27, 3, 81856, 2368, 64, 4, 23846125, 469625, 7625, 125, 5, 10943504136, 160767720, 1898856, 19656, 216, 6, 7250862593527, 83548607478, 776598305, 6081733, 43561, 343, 7, 6545029128786432, 61068815111168, 465690017280, 2966844928, 16494080, 86528, 512, 8
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Examples

			Triangle T begins:
              1;
              8,           2;
            513,          27,         3;
          81856,        2368,        64,       4;
       23846125,      469625,      7625,     125,     5;
    10943504136,   160767720,   1898856,   19656,   216,   6;
  7250862593527, 83548607478, 776598305, 6081733, 43561, 343, 7;
  ...
The matrix cube T^3 shifts each row to the right 1 place, dropping the diagonal D and putting A006690 in column 0:
             1;
            56,           8;
          7965,         513,        27;
       2128064,       81856,      2368,      64;
     914929500,    23846125,    469625,    7625,  125;
  576689214816, 10943504136, 160767720, 1898856, 19656, 216;
  ...
From _Petros Hadjicostas_, Mar 11 2021: (Start)
We illustrate the above formula for T(n,k=0) with the compositions of n + 1 for n = 2. The compositions of n + 1 = 3 are 3, 1 + 2, 2 + 1, and 1 + 1 + 1.  Thus the above sum has four terms with (r = 1, s_1 = 3), (r = 2, s_1 = 1, s_2 = 2), (r = 2, s_1 = 2, s_2 = 1), and (r = 3, s_1 = s_2 = s_3 = 1).
The value of the denominator Product_{j=1..r} s_j! for these four terms is 6, 2, 2, and 1, respectively.
The value of the numerator s_1^(-1)*Product_{j=1..r} (Sum_{i=1..j} s_i)^(3*s_j) for these four terms is 19683/3, 729/1, 1728/2, and 216/1.
Thus T(2,0) = (19683/3)/6 - (729/1)/2 - (1728/2)/2 + (216/1)/1 = 513. (End)
		

Crossrefs

Cf. A107667, A107672 (column 0), A107673, A107674 (matrix square), A107676 (matrix cube), A006690.

Programs

  • PARI
    {T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D*P)[n+1,k+1])}

Formula

Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^3)^(n-k)/(n-k)! for n >= k >= 0 and the diagonal matrix D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D*P.
T(n,k=0) = Sum_{r=1..(n+1)} (-1)^(r-1) * Sum_{s_1, ..., s_r} (s_1^(-1)/(Product_{j=1..r} s_j!)) * Product_{j=1..r} (Sum_{i=1..j} s_i)^(3*s_j)), where the second sum is over lists (s_1, ..., s_r) of positive integers s_i such that Sum_{i=1..r} s_i = n + 1. (Thus, the second sum is over all compositions of n + 1.) - Petros Hadjicostas, Mar 11 2021