A107750 If n=0 then 0, else smallest number greater than its predecessor and having either more or fewer zeros in its binary representation.
0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93
Offset: 0
Keywords
Links
Programs
-
Haskell
a107750 n = a107750_list !! n a107750_list = 0 : f 0 where f x = y : f y where y = head [z | z <- [x + 1 ..], a023416 z /= a023416 x] -- Reinhard Zumkeller, Jul 07 2014
-
Mathematica
Table[n - Sign[Floor[n/3]] + Floor[(1/2) Sum[Ceiling[(i + 2)/3] - Floor[(i + 2)/3], {i, n}]], {n, 0, 50}] (* Wesley Ivan Hurt, Jun 16 2014 *)
Formula
a(n+1) = a(n) + A107751(n).
For k >= 0, 0 <= i <= 3*2^k:
a(6*2^k + i) = a(3*2^k + i) + 4*2^k,
a(9*2^k + i) = a(3*2^k + i) + 8*2^k.
a(n) = n - sign(floor(n/3)) + floor( (1/2)*sum_{i=1..n} ( ceiling((i+2)/3) - floor((i+2)/3) ) ). - Wesley Ivan Hurt, Jun 16 2014
Conjectures from Colin Barker, Jul 24 2017: (Start)
G.f.: x*(1+x)*(1+x^2-x^3+x^4) / ((1-x)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>3.
(End)
Comments