cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107759 a(n) = (+2)UnitarySigma(n): if n = Product p_i^r_i then a(n) = Product (2 + p_i^r_i).

Original entry on oeis.org

1, 4, 5, 6, 7, 20, 9, 10, 11, 28, 13, 30, 15, 36, 35, 18, 19, 44, 21, 42, 45, 52, 25, 50, 27, 60, 29, 54, 31, 140, 33, 34, 65, 76, 63, 66, 39, 84, 75, 70, 43, 180, 45, 78, 77, 100, 49, 90, 51, 108, 95, 90, 55, 116, 91
Offset: 1

Views

Author

Yasutoshi Kohmoto, May 25 2005

Keywords

Examples

			a(12) = (2+3)*(2+4) = 30.
		

Crossrefs

Programs

  • Maple
    A107759 := proc(n) local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; mul( 2+op(1,p)^op(2,p), p=pf) ; end if; end proc:
    seq(A107759(n),n=1..60) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    a[1] = 1; a[n_] := Times @@ (2 + Power @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} usigma(d), where usigma = A034448. - Ilya Gutkovskiy, Mar 27 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 1/p^2 - 2/p^3) = A072691 * A330594 = 0.910438... . - Amiram Eldar, Nov 01 2022