cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107788 Numbers of the form (8^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 8, 11, 64, 88, 121, 512, 704, 968, 1331, 4096, 5632, 7744, 10648, 14641, 32768, 45056, 61952, 85184, 117128, 161051, 262144, 360448, 495616, 681472, 937024, 1288408, 1771561, 2097152, 2883584, 3964928, 5451776, 7496192, 10307264
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 14 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a107788 n = a107788_list !! (n-1)
    a107788_list = f $ singleton (1,0,0) where
       f s = y : f (insert (8 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    Take[Union[8^First[#]*11^Last[#]&/@Tuples[Range[0,20],2]],40] (* Harvey P. Dale, Jan 17 2015 *)
    n = 10^6; Flatten[Table[8^i*11^j, {i, 0, Log[8, n]}, {j, 0, Log[11, n/8^i]}]] // Sort (* Amiram Eldar, Oct 07 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (8*11)/((8-1)*(11-1)) = 44/35. - Amiram Eldar, Oct 07 2020
a(n) ~ exp(sqrt(2*log(8)*log(11)*n)) / sqrt(88). - Vaclav Kotesovec, Oct 07 2020