cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107855 a(n) = 2*a(n-2)+4*a(n-4)+a(n-6), n>11.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 3, 1, 10, 9, 33, 24, 109, 85, 360, 275, 1189, 914, 3927, 3013, 12970, 9957, 42837, 32880, 141481, 108601, 467280, 358679, 1543321, 1184642, 5097243, 3912601, 16835050, 12922449, 55602393, 42679944, 183642229, 140962285
Offset: 1

Views

Author

Roger L. Bagula, Jun 12 2005

Keywords

Programs

  • Mathematica
    F[1] = 1; F[2] = 1; F[3] = 1; F[4] = 0; F[n__] := F[n] = If[ Mod[n, 2] == 0, -3*F[n - 1] + 3*F[n - 3] + F[n - 4], F[n - 1] + F[n - 2]] a = Table[Abs[F[n]], {n, 1, 50}]
    Join[{1,1,1,0,1},LinearRecurrence[{0,2,0,4,0,1},{1,2,3,1,10,9},50]] (* Harvey P. Dale, Oct 18 2013 *)

Formula

lim_{ n->inf} a(n)/a(n-1) alternating between 0.767592... and 4.30278...
G.f.: x*(2*x^10+8*x^8+5*x^6+3*x^5+5*x^4+x^2-1+2*x^3-x)/( (x^2+1)*(x^4+3*x^2-1)). [ Sep 28 2009]
a(2n) = A006190(n-2), a(2n+1) = (1/3)*[A052924(n-2) - 4*(-1)^n], n>2.

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009