cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107887 Column 2 of triangle A107884.

Original entry on oeis.org

1, 3, 12, 67, 498, 4701, 54298, 745734, 11911221, 217418722, 4471886340, 102454974993, 2589782600870, 71643147090159, 2154145374733176, 69981625464827605, 2443741571641202568, 91309620200404008348
Offset: 0

Views

Author

Paul D. Hanna, Jun 04 2005

Keywords

Examples

			G.f. = 1 + 3*x + 12*x^2 + 67*x^3 + 498*x^4 + 4701*x^5 + 54298*x^6 + ...
1 = 1*(1-x)^2 + 2*x*(1-x)^5 + 9*x^2*(1-x)^9 +
61*x^3*(1-x)^14 + 550*x^4*(1-x)^20 + 6195*x^5*(1-x)^27 +...
		

Crossrefs

Programs

  • Mathematica
    a[ n_, k_: 2, j_: 1] := If[n < 1, Boole[n >= 0], a[ n, k, j] = Sum[ a[ n - 1, i, j + 1], {i, k + j}]]; (* Michael Somos, Nov 26 2016 *)
  • PARI
    {a(n)=polcoeff(1-sum(k=0,n-1,a(k)*x^k*(1-x+x*O(x^n))^(2+(k+1)*(k+2)/2)),n)}

Formula

G.f.: 1 = Sum_{k>=0} a(k)*x^k*(1-x)^(2+(k+1)*(k+2)/2).