A107890 Semiprimes that are the product of two members of A007645.
9, 21, 39, 49, 57, 91, 93, 111, 129, 133, 169, 183, 201, 217, 219, 237, 247, 259, 291, 301, 309, 327, 361, 381, 403, 417, 427, 453, 469, 471, 481, 489, 511, 543, 553, 559, 579, 589, 597, 633, 669, 679, 687, 703, 721, 723, 763, 793, 813, 817, 831, 849, 871
Offset: 1
References
- Conway, J. H. and Guy, R. K., The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
- Wagon, S. "Eisenstein Primes." Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Eisenstein Integer.
- Eric Weisstein's World of Mathematics, Eisenstein Prime.
- Eric Weisstein's World of Mathematics, Semiprime.
Programs
-
Maple
N:= 1000: # for terms <= N P:= [3,op(select(isprime, [seq(i,i=1..N/3,6)]))]: R:= NULL: for i from 1 while P[i]^2 <= N do m:= ListTools:-BinaryPlace(P,N/P[i]+1/2); R:= R, seq(P[i]*P[j],j=i..m); od: sort([R]); # Robert Israel, Aug 28 2020
Formula
{a(n)} = {p*q: p and q both elements of A007645} = {p*q: p and q both of form 3*m^2 * n^2 for integers m, n}.
Extensions
Edited by Ray Chandler, Oct 15 2005
Definition corrected by N. J. A. Sloane, Feb 06 2008