cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256124 Coefficients in asymptotic expansion of sequence A107894.

Original entry on oeis.org

1, 1, 3, 12, 65, 443, 3626, 34811, 384479, 4806098, 67109281, 1035627571, 17505788792, 321689532755, 6385033369589, 136124555962844, 3102031758758001, 75238874818446123, 1935053096953675800, 52595740530868430967, 1506344153813275882667
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 15 2015

Keywords

Examples

			A107894(n) / n! ~ 1 + 1/n + 3/n^2 + 12/n^3 + 65/n^4 + 443/n^5 + 3626/n^6 + ...
		

Crossrefs

Formula

a(k) ~ k! / (4 * (log(2))^(k+1)).

A107895 Euler transform of n!.

Original entry on oeis.org

1, 1, 3, 9, 36, 168, 961, 6403, 49302, 430190, 4199279, 45326013, 535867338, 6884000262, 95453970483, 1420538043009, 22579098396600, 381704267100888, 6837775526561031, 129377310771795789, 2578101967764973314, 53965231260126083854, 1183813954026245944519
Offset: 0

Views

Author

Thomas Wieder, May 26 2005

Keywords

Crossrefs

Programs

  • Maple
    EulerTrans := proc(p) local b; b := proc(n) option remember; local d, j;
    `if`(n=0,1, add(add(d*p(d),d=numtheory[divisors](j)) *b(n-j),j=1..n)/n) end end:
    A107895 := EulerTrans(n->n!):  seq(A107895(n),n=0..20);
    # After Alois P. Heinz, A000335.  [Peter Luschny, Jul 07 2011]
  • Mathematica
    EulerTrans[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; A107895 = EulerTrans[Factorial]; Table[A107895[n], {n, 0, 22}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)

Formula

a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 66/n^4 + 450/n^5 + 3679/n^6 + 35260/n^7 + 388511/n^8 + 4844584/n^9 + 67502450/n^10), for next coefficients see A248871. - Vaclav Kotesovec, Mar 14 2015
G.f.: Product_{n>=1} 1/(1-x^n)^(n!). - Vaclav Kotesovec, Aug 04 2015
Showing 1-2 of 2 results.