cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107983 Triangle read by rows: T(n,k) = (k+1)(n+2)(n+3)(n-k+2)(n-k+1)/12 for 0<=k<=n.

Original entry on oeis.org

1, 6, 4, 20, 20, 10, 50, 60, 45, 20, 105, 140, 126, 84, 35, 196, 280, 280, 224, 140, 56, 336, 504, 540, 480, 360, 216, 84, 540, 840, 945, 900, 750, 540, 315, 120, 825, 1320, 1540, 1540, 1375, 1100, 770, 440, 165, 1210, 1980, 2376, 2464, 2310, 1980, 1540
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids. Column 0 yields A002415. Main diagonal yields A000292. Row sums yield A006542.
T(n,k) = number of Dyck (n+4)-paths with 4 peaks (UDs) and last descent of length k+1. For example, T(1,1)=4 counts UUDUDUDUDD, UDUUDUDUDD, UDUDUUDUDD, UDUDUDUUDD. - David Callan, Jun 26 2006

Examples

			Triangle begins:
1;
6,4;
20,20,10;
50,60,45,20;
		

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{F(n,3,-l)}).

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then (k+1)*(n+2)*(n+3)*(n-k+2)*(n-k+1)/12 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[((k+1)(n+2)(n+3)(n-k+2)(n-k+1))/12,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 08 2013 *)