A107983 Triangle read by rows: T(n,k) = (k+1)(n+2)(n+3)(n-k+2)(n-k+1)/12 for 0<=k<=n.
1, 6, 4, 20, 20, 10, 50, 60, 45, 20, 105, 140, 126, 84, 35, 196, 280, 280, 224, 140, 56, 336, 504, 540, 480, 360, 216, 84, 540, 840, 945, 900, 750, 540, 315, 120, 825, 1320, 1540, 1540, 1375, 1100, 770, 440, 165, 1210, 1980, 2376, 2464, 2310, 1980, 1540
Offset: 0
Examples
Triangle begins: 1; 6,4; 20,20,10; 50,60,45,20;
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{F(n,3,-l)}).
Programs
-
Maple
T:=proc(n,k) if k<=n then (k+1)*(n+2)*(n+3)*(n-k+2)*(n-k+1)/12 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
Flatten[Table[((k+1)(n+2)(n+3)(n-k+2)(n-k+1))/12,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 08 2013 *)
Comments