cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108014 Expansion of (x^2-2*x)/(x^4-x^2+2*x-1).

Original entry on oeis.org

0, 2, 3, 4, 5, 8, 14, 24, 39, 62, 99, 160, 260, 422, 683, 1104, 1785, 2888, 4674, 7564, 12239, 19802, 32039, 51840, 83880, 135722, 219603, 355324, 574925, 930248, 1505174, 2435424, 3940599, 6376022, 10316619, 16692640, 27009260, 43701902
Offset: 0

Views

Author

Roger L. Bagula, May 30 2005

Keywords

Programs

  • Mathematica
    M = {{0, 0, 0, 1}, {1, 1, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 1}} v[1] = {0, 1, 1, 2}; v[n_] := v[n] = M.v[n - 1]; digits = 50; a = Table[v[n][[1]], {n, 1, digits}]
    CoefficientList[Series[(x^2-2x)/(x^4-x^2+2x-1),{x,0,40}],x] (* or *) LinearRecurrence[{2,-1,0,1},{0,2,3,4},41] (* Harvey P. Dale, Aug 19 2011 *)
  • PARI
    Vec((x^2-2*x)/(x^4-x^2+2*x-1)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

M = {{0, 0, 0, 1}, {1, 1, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 1}} v[n]=v[n-1].M a(n) = v[n][[1]].
a(n) = (1/2)*[Lucas(n+1) + 2*cos((n+4)*Pi/3)].
a(n) = (1/2)*[A000032(n+1) + A057079(n+5)].
a(0)=0, a(1)=2, a(2)=3, a(3)=4, a(n) = 2*a(n-1)-a(n-2)+a(n-4). [Harvey P. Dale, Aug 19 2011]