A108035 Triangle read by rows: n-th row consists of n copies of the n-th nonzero Fibonacci number.
1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233, 233
Offset: 1
Examples
1; 2,2; 3,3,3; 5,5,5,5; 8,8,8,8,8; ...
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Programs
-
Haskell
a108035 n k = a108035_tabl !! (n-1) !! (n-1) a108035_row n = a108035_tabl !! (n-1) a108035_tabl = zipWith replicate [1..] $ drop 2 a000045_list -- Reinhard Zumkeller, Oct 07 2012
-
Mathematica
Flatten[Table[Table[Fibonacci[n],{n-1}],{n,13}]] (* Harvey P. Dale, Jul 18 2015 *)
-
Python
from math import isqrt from sympy import fibonacci def A108035(n): return int(fibonacci(1+(m:=isqrt(k:=n<<1))+(k>m*(m+1)))) # Chai Wah Wu, Nov 07 2024
Formula
G.f.: (1+x+y)/((1-x-x^2)*(1-y-y^2)). [U coordinates]
Extensions
Definition clarified by N. J. A. Sloane, Nov 09 2024