A108037 Triangle read by rows: n-th row is n-th nonzero Fibonacci number repeated n+1 times.
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 144, 144
Offset: 0
Examples
0; 1,1; 1,1,1; 2,2,2,2; 3,3,3,3,3; 5,5,5,5,5,5; ...
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Programs
-
Haskell
a108037 n k = a108037_tabl !! n !! k a108037_row n = a108037_tabl !! n a108037_tabl = zipWith replicate [1..] a000045_list -- Reinhard Zumkeller, Oct 07 2012
-
Mathematica
Table[Table[Fibonacci[n],{n+1}],{n,0,12}]//Flatten (* Harvey P. Dale, May 07 2017 *)
-
Python
from math import isqrt from sympy import fibonacci def A108037(n): return int(fibonacci((m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))) # Chai Wah Wu, Nov 07 2024
Formula
G.f.: x*(1+y-x*y)/((1-x-x^2)*(1-x*y-x^2*y^2)). [U coordinates]