cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108088 Decimal expansion of 1/(1+1/(1+2/(1+3/(1+4/(1+5/(1+...)))))).

Original entry on oeis.org

6, 5, 5, 6, 7, 9, 5, 4, 2, 4, 1, 8, 7, 9, 8, 4, 7, 1, 5, 4, 3, 8, 7, 1, 2, 3, 0, 7, 3, 0, 8, 1, 1, 2, 8, 3, 3, 9, 9, 2, 8, 2, 3, 3, 2, 8, 7, 0, 4, 6, 2, 0, 2, 8, 0, 5, 3, 6, 8, 6, 1, 5, 8, 7, 3, 4, 1, 9, 7, 1, 6, 5, 7, 6, 6, 3, 1, 0, 5, 8, 9, 0, 6, 5, 8, 5, 0, 9, 5
Offset: 0

Views

Author

Philippe Deléham, Jun 21 2005

Keywords

Comments

Term of Ramanujan's formula (see A059444 and A060196).

Examples

			0.6556795424187984715438712307308112833992823328704...
		

References

  • S. R. Finch, "Mathematical Constants", Cambridge, pp. 423-428.

Crossrefs

Cf. A111129.

Programs

  • Mathematica
    RealDigits[Sqrt[Pi*E/2]*Erfc[1/Sqrt[2]], 10, 111][[1]]
  • PARI
    sqrt(Pi*exp(1)/2)*erfc(1/sqrt(2)) \\ G. C. Greubel, Feb 03 2017

Formula

Equals sqrt(Pi*e/2)*erfc(1/sqrt(2)), where erfc is the complementary error function. - Daniel Forgues, Apr 14 2011
Also equals Integral_{-infinity..infinity} (1/sqrt(2*Pi))*exp(-x^2/2)/(1+x^2) dx, where the integrand is normal PDF times Cauchy PDF. - Jean-François Alcover, Apr 28 2015