cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108118 Integers not divisible by 3 or 4.

Original entry on oeis.org

1, 2, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 25, 26, 29, 31, 34, 35, 37, 38, 41, 43, 46, 47, 49, 50, 53, 55, 58, 59, 61, 62, 65, 67, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 89, 91, 94, 95, 97, 98, 101, 103, 106, 107, 109, 110, 113, 115, 118, 119, 121, 122, 125, 127, 130, 131
Offset: 1

Views

Author

Zak Seidov, Jun 04 2005

Keywords

Comments

Or, numbers congruent to {1, 2, 5, 7, 10, 11} mod 12 (cf. A007310). Expand (x+x^2+x^5+x^7+x^10+x^11)/(1-x^12) (cf. A007310). All terms, except 35 and 70, are also in A099477.

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [1, 2, 5, 7, 10, 11]]; // Wesley Ivan Hurt, Jul 22 2016
  • Maple
    A108118:=n->12*floor(n/6)+[1, 2, 5, 7, 10, 11][(n mod 6)+1]: seq(A108118(n), n=0..100); # Wesley Ivan Hurt, Jul 22 2016
  • Mathematica
    Select[ Range[132], !IntegerQ[ #/4] && !IntegerQ[ #/3] &] (* or *) Flatten[ NestList[12 + # &, {1, 2, 5, 7, 10, 11}, 10]]

Formula

G.f.: x*(1+x^2)^2 / ( (1+x)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) - a(n-3) + 2*a(n-4) - a(n-5) for n>5.
a(n) = a(n-6) + 12 for n>6.
a(n) = (6*n - 3 + cos(n*Pi/3) - cos(n*Pi) - sqrt(3)*sin(n*Pi/3))/3.
a(6k) = 12k-1, a(6k-1) = 12k-2, a(6k-2) = 12k-5, a(6k-3) = 12k-7, a(6k-4) = 12k-10, a(6k-5) = 12k-11. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (4-sqrt(3))*Pi/12. - Amiram Eldar, Jan 01 2022