A108129 Riesel problem: let k=2n-1; then a(n)=smallest m >= 1 such that k*2^m-1 is prime, or -1 if no such prime exists.
2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, 1, 4, 1, 1, 2, 1, 1, 12, 3, 2, 4, 5, 1, 2, 7, 1, 2, 1, 3, 2, 5, 1, 4, 1, 3, 2, 1, 1, 10, 3, 2, 10, 9, 2, 8, 1, 1, 12, 1, 2, 2, 25, 1, 2, 3, 1, 2, 1, 1, 2, 5, 1, 4, 5, 3, 2, 1, 1, 2, 3, 2, 4, 1, 2, 2, 1, 1, 8, 3, 4, 2, 1, 3, 226, 3, 1, 2, 1, 1, 2
Offset: 1
Keywords
References
- Hans Riesel, Några stora primtal, Elementa 39 (1956), pp. 258-260.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..329
- A. Aigner, Folgen der Art ar^n + b, welche nur teilbare Zahlen liefern, Math. Nachr. 23 (1961), pp. 259-264. (Cited in Browkin & Schinzel)
- R. Ballinger & W. Keller, The Riesel Problem: Definition and Status.
- J. Browkin and A. Schinzel, On integers not of the form n-phi(n), Colloq. Math., 68 (1995), pp. 55-58.
- Wilfrid Keller, List of primes k.2^n - 1 for k < 300 .
- Hans Riesel, Some large prime numbers. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
Crossrefs
Programs
-
Mathematica
Array[Function[k, SelectFirst[Range@300, PrimeQ[k 2^# - 1] &]][2 # - 1] &, 102] (* Michael De Vlieger, Jan 12 2018 *) smk[n_]:=Module[{m=1,k=2n-1},While[!PrimeQ[k 2^m-1],m++];m]; Array[smk,120] (* Harvey P. Dale, Dec 26 2023 *)
-
PARI
forstep(k=1,301,2,n=1;while(!isprime(k*2^n-1),n++);print1(n,","))
Extensions
Edited by Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 25 2006
Name corrected by T. D. Noe, Feb 13 2011
Comments