A108142 a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 1; a[5] = 1; a[6] = 1; for n >= 7, a[n] = 6*a[n - 1] - 5*a[n - 2] - 4*a[n - 3] - 3*a[ n - 4] + 2*a[n - 5] + a[n - 6]; then take absolute values.
1, 1, 1, 1, 1, 1, 3, 27, 151, 759, 3679, 17599, 83767, 397943, 1889059, 8964891, 42539855, 201849743, 957752095, 4544385823, 21562354767, 102309686479, 485441784803, 2303337053819, 10928934112423, 51855892302151
Offset: 1
Keywords
References
- Roger Bagula, Factoring Double Fibonacci Sequences, 2000
Links
- Index entries for linear recurrences with constant coefficients, signature (6, -5, -4, -3, 2, 1).
Programs
-
Mathematica
F[1] = 1; F[2] = 1; F[3] = 1; F[4] = 1; F[5] = 1; F[6] = 1; F[n__] := F[n] = 6*F[n - 1] - 5*F[n - 2] - 4*F[n - 3] - 3*F[ n - 4] + 2*F[n - 5] + F[n - 6] a = Table[Abs[F[n]], {n, 1, 50}] LinearRecurrence[{6,-5,-4,-3,2,1},{1,1,1,1,1,1,3,27,151,759,3679,17599},30] (* Harvey P. Dale, Apr 25 2018 *)
Extensions
Edited by N. J. A. Sloane, Jun 08 2007
Comments